Answer :
To solve this problem, we're given a force of 200 N (Newtons) and an acceleration of [tex]\(8 \, \text{m/s}^2\)[/tex]. We need to find the mass of the crate using the formula:
[tex]\[ F = m \times a \][/tex]
where
- [tex]\(F\)[/tex] is the force applied,
- [tex]\(m\)[/tex] is the mass,
- [tex]\(a\)[/tex] is the acceleration.
We're looking to find the mass [tex]\(m\)[/tex], so let's rearrange the formula:
[tex]\[ m = \frac{F}{a} \][/tex]
Now, plug in the given values:
1. The force [tex]\(F\)[/tex] is 200 N.
2. The acceleration [tex]\(a\)[/tex] is [tex]\(8 \, \text{m/s}^2\)[/tex].
Substitute these values into the formula:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
Therefore, the mass of the crate is 25 kg.
[tex]\[ F = m \times a \][/tex]
where
- [tex]\(F\)[/tex] is the force applied,
- [tex]\(m\)[/tex] is the mass,
- [tex]\(a\)[/tex] is the acceleration.
We're looking to find the mass [tex]\(m\)[/tex], so let's rearrange the formula:
[tex]\[ m = \frac{F}{a} \][/tex]
Now, plug in the given values:
1. The force [tex]\(F\)[/tex] is 200 N.
2. The acceleration [tex]\(a\)[/tex] is [tex]\(8 \, \text{m/s}^2\)[/tex].
Substitute these values into the formula:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
Therefore, the mass of the crate is 25 kg.