Answer :
To simplify the expression
[tex]$$
\left(5x^2 + 3x\right) - \left(8x - 2x^2 + 7\right),
$$[/tex]
follow these steps:
1. Remove the Parentheses:
Distribute the negative sign across the terms in the second group:
[tex]$$
5x^2 + 3x - 8x + 2x^2 - 7.
$$[/tex]
2. Combine Like Terms:
- For the [tex]\(x^2\)[/tex] terms:
[tex]$$5x^2 + 2x^2 = 7x^2.$$[/tex]
- For the [tex]\(x\)[/tex] terms:
[tex]$$3x - 8x = -5x.$$[/tex]
- The constant term remains:
[tex]$$-7.$$[/tex]
3. Write the Final Expression:
Putting everything together, we have:
[tex]$$
7x^2 - 5x - 7.
$$[/tex]
Thus, the simplified expression is
[tex]$$7x^2 - 5x - 7.$$[/tex]
[tex]$$
\left(5x^2 + 3x\right) - \left(8x - 2x^2 + 7\right),
$$[/tex]
follow these steps:
1. Remove the Parentheses:
Distribute the negative sign across the terms in the second group:
[tex]$$
5x^2 + 3x - 8x + 2x^2 - 7.
$$[/tex]
2. Combine Like Terms:
- For the [tex]\(x^2\)[/tex] terms:
[tex]$$5x^2 + 2x^2 = 7x^2.$$[/tex]
- For the [tex]\(x\)[/tex] terms:
[tex]$$3x - 8x = -5x.$$[/tex]
- The constant term remains:
[tex]$$-7.$$[/tex]
3. Write the Final Expression:
Putting everything together, we have:
[tex]$$
7x^2 - 5x - 7.
$$[/tex]
Thus, the simplified expression is
[tex]$$7x^2 - 5x - 7.$$[/tex]