Answer :
To find the mass of the crate, we can use the formula for force:
[tex]\[ F = ma \][/tex]
where:
- [tex]\( F \)[/tex] is the force applied (in Newtons),
- [tex]\( m \)[/tex] is the mass (in kilograms),
- [tex]\( a \)[/tex] is the acceleration (in meters per second squared).
We need to solve for the mass [tex]\( m \)[/tex]. Rearrange the formula to solve for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{F}{a} \][/tex]
Now, plug in the given values:
- Force [tex]\( F = 200 \)[/tex] N
- Acceleration [tex]\( a = 8 \)[/tex] m/s[tex]\(^2\)[/tex]
Substitute these values into the formula:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
Therefore, the mass of the crate is 25 kg. The correct option is 25 kg.
[tex]\[ F = ma \][/tex]
where:
- [tex]\( F \)[/tex] is the force applied (in Newtons),
- [tex]\( m \)[/tex] is the mass (in kilograms),
- [tex]\( a \)[/tex] is the acceleration (in meters per second squared).
We need to solve for the mass [tex]\( m \)[/tex]. Rearrange the formula to solve for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{F}{a} \][/tex]
Now, plug in the given values:
- Force [tex]\( F = 200 \)[/tex] N
- Acceleration [tex]\( a = 8 \)[/tex] m/s[tex]\(^2\)[/tex]
Substitute these values into the formula:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
Therefore, the mass of the crate is 25 kg. The correct option is 25 kg.