High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Which expression is equal to [tex]$(3x - 5)(2x - 7)$[/tex]?

A. [tex]$5x^2 - 21x + 12$[/tex]
B. [tex]$6x^2 - 31x + 35$[/tex]
C. [tex]$6x^2 + 31x - 35$[/tex]
D. [tex]$6x^2 - 31x - 12$[/tex]

Answer :

To find which expression is equal to [tex]\((3x-5)(2x-7)\)[/tex], let's multiply these two binomials using the distributive property, also known as the FOIL method (First, Outer, Inner, Last).

1. First: Multiply the first terms in each binomial:
[tex]\[
3x \cdot 2x = 6x^2
\][/tex]

2. Outer: Multiply the outer terms:
[tex]\[
3x \cdot (-7) = -21x
\][/tex]

3. Inner: Multiply the inner terms:
[tex]\[
-5 \cdot 2x = -10x
\][/tex]

4. Last: Multiply the last terms:
[tex]\[
-5 \cdot (-7) = 35
\][/tex]

Now, combine all these products:
[tex]\[
6x^2 - 21x - 10x + 35
\][/tex]

Combine like terms ([tex]\(-21x\)[/tex] and [tex]\(-10x\)[/tex]):
[tex]\[
6x^2 - 31x + 35
\][/tex]

So, the expression equivalent to [tex]\((3x-5)(2x-7)\)[/tex] is:
[tex]\[
6x^2 - 31x + 35
\][/tex]

Therefore, the correct choice is: [tex]\(6x^2 - 31x + 35\)[/tex].