Answer :
To find the mass of the crate, we can use the formula that relates force, mass, and acceleration:
[tex]\[ F = ma \][/tex]
where:
- [tex]\( F \)[/tex] is the force applied (in Newtons),
- [tex]\( m \)[/tex] is the mass (in kilograms),
- [tex]\( a \)[/tex] is the acceleration (in meters per second squared).
We're given:
- A force ([tex]\( F \)[/tex]) of 200 N,
- An acceleration ([tex]\( a \)[/tex]) of 8 m/s².
We need to find the mass ([tex]\( m \)[/tex]). We can rearrange the formula to solve for mass:
[tex]\[ m = \frac{F}{a} \][/tex]
Substituting the given values into the formula:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
Thus, the mass of the crate is 25 kg.
[tex]\[ F = ma \][/tex]
where:
- [tex]\( F \)[/tex] is the force applied (in Newtons),
- [tex]\( m \)[/tex] is the mass (in kilograms),
- [tex]\( a \)[/tex] is the acceleration (in meters per second squared).
We're given:
- A force ([tex]\( F \)[/tex]) of 200 N,
- An acceleration ([tex]\( a \)[/tex]) of 8 m/s².
We need to find the mass ([tex]\( m \)[/tex]). We can rearrange the formula to solve for mass:
[tex]\[ m = \frac{F}{a} \][/tex]
Substituting the given values into the formula:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
Thus, the mass of the crate is 25 kg.