Answer :
To find the mass of the crate, we can use the formula for force, which is given by:
[tex]\[ F = m \times a \][/tex]
Where:
- [tex]\( F \)[/tex] is the force applied (in Newtons),
- [tex]\( m \)[/tex] is the mass (in kilograms),
- [tex]\( a \)[/tex] is the acceleration (in meters per second squared).
We need to solve for the mass [tex]\( m \)[/tex], so we rearrange the formula:
[tex]\[ m = \frac{F}{a} \][/tex]
We can now substitute the given values into the formula:
- The force [tex]\( F \)[/tex] is 200 N,
- The acceleration [tex]\( a \)[/tex] is [tex]\( 8 \, \text{m/s}^2 \)[/tex].
Substituting these values in:
[tex]\[ m = \frac{200}{8} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
Therefore, the mass of the crate is 25 kg.
[tex]\[ F = m \times a \][/tex]
Where:
- [tex]\( F \)[/tex] is the force applied (in Newtons),
- [tex]\( m \)[/tex] is the mass (in kilograms),
- [tex]\( a \)[/tex] is the acceleration (in meters per second squared).
We need to solve for the mass [tex]\( m \)[/tex], so we rearrange the formula:
[tex]\[ m = \frac{F}{a} \][/tex]
We can now substitute the given values into the formula:
- The force [tex]\( F \)[/tex] is 200 N,
- The acceleration [tex]\( a \)[/tex] is [tex]\( 8 \, \text{m/s}^2 \)[/tex].
Substituting these values in:
[tex]\[ m = \frac{200}{8} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
Therefore, the mass of the crate is 25 kg.