Answer :
To find the mass of the crate, we can use the formula for force, which is:
[tex]\[ F = ma \][/tex]
where:
- [tex]\( F \)[/tex] is the force applied,
- [tex]\( m \)[/tex] is the mass of the object,
- [tex]\( a \)[/tex] is the acceleration.
We are given:
- [tex]\( F = 200 \)[/tex] Newtons,
- [tex]\( a = 8 \)[/tex] meters per second squared [tex]\((m/s^2)\)[/tex].
We need to find the mass [tex]\( m \)[/tex]. Let's rearrange the formula to solve for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{F}{a} \][/tex]
Now, substitute the given values into the equation:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
So, the mass of the crate is [tex]\( 25 \, \text{kg} \)[/tex].
[tex]\[ F = ma \][/tex]
where:
- [tex]\( F \)[/tex] is the force applied,
- [tex]\( m \)[/tex] is the mass of the object,
- [tex]\( a \)[/tex] is the acceleration.
We are given:
- [tex]\( F = 200 \)[/tex] Newtons,
- [tex]\( a = 8 \)[/tex] meters per second squared [tex]\((m/s^2)\)[/tex].
We need to find the mass [tex]\( m \)[/tex]. Let's rearrange the formula to solve for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{F}{a} \][/tex]
Now, substitute the given values into the equation:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
So, the mass of the crate is [tex]\( 25 \, \text{kg} \)[/tex].