Answer :
To determine the mass of the crate, we will use Newton's second law of motion, which states that force ([tex]\( F \)[/tex]) is equal to mass ([tex]\( m \)[/tex]) times acceleration ([tex]\( a \)[/tex]). The formula is:
[tex]\[ F = ma \][/tex]
We need to find the mass ([tex]\( m \)[/tex]), and we are given the force ([tex]\( F = 200 \)[/tex] Newtons) and the acceleration ([tex]\( a = 8 \)[/tex] meters per second squared). We rearrange the formula to solve for mass:
[tex]\[ m = \frac{F}{a} \][/tex]
Substitute the given values into the equation:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
Perform the division:
[tex]\[ m = 25 \, \text{kg} \][/tex]
Therefore, the mass of the crate is [tex]\( 25 \)[/tex] kilograms. The correct answer is:
[tex]\[ 25 \, \text{kg} \][/tex]
[tex]\[ F = ma \][/tex]
We need to find the mass ([tex]\( m \)[/tex]), and we are given the force ([tex]\( F = 200 \)[/tex] Newtons) and the acceleration ([tex]\( a = 8 \)[/tex] meters per second squared). We rearrange the formula to solve for mass:
[tex]\[ m = \frac{F}{a} \][/tex]
Substitute the given values into the equation:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
Perform the division:
[tex]\[ m = 25 \, \text{kg} \][/tex]
Therefore, the mass of the crate is [tex]\( 25 \)[/tex] kilograms. The correct answer is:
[tex]\[ 25 \, \text{kg} \][/tex]