Answer :
To determine the mass of a substance given in moles, we first need to calculate its molar mass. For the compound [tex]$K_2SO_4$[/tex], we have:
- Two atoms of potassium ([tex]$K$[/tex]) with an atomic mass of approximately [tex]$39.10$[/tex] g/mol.
- One atom of sulfur ([tex]$S$[/tex]) with an atomic mass of approximately [tex]$32.07$[/tex] g/mol.
- Four atoms of oxygen ([tex]$O$[/tex]) with an atomic mass of approximately [tex]$16.00$[/tex] g/mol.
The molar mass is then calculated as follows:
[tex]$$
\text{Molar mass of } K_2SO_4 = 2(39.10) + 32.07 + 4(16.00)
$$[/tex]
Breaking down the calculation:
1. For potassium:
[tex]$$
2 \times 39.10 = 78.20 \text{ g/mol}
$$[/tex]
2. For sulfur:
[tex]$$
32.07 \text{ g/mol}
$$[/tex]
3. For oxygen:
[tex]$$
4 \times 16.00 = 64.00 \text{ g/mol}
$$[/tex]
Adding these gives:
[tex]$$
\text{Molar mass} = 78.20 + 32.07 + 64.00 = 174.27 \text{ g/mol}
$$[/tex]
Now, the mass of [tex]$5.00$[/tex] moles of [tex]$K_2SO_4$[/tex] can be found by multiplying the number of moles by the molar mass:
[tex]$$
\text{Mass} = 5.00 \text{ moles} \times 174.27 \text{ g/mol} = 871.35 \text{ g}
$$[/tex]
Thus, the mass of [tex]$5.00$[/tex] moles of [tex]$K_2SO_4$[/tex] is [tex]$871.35$[/tex] grams.
- Two atoms of potassium ([tex]$K$[/tex]) with an atomic mass of approximately [tex]$39.10$[/tex] g/mol.
- One atom of sulfur ([tex]$S$[/tex]) with an atomic mass of approximately [tex]$32.07$[/tex] g/mol.
- Four atoms of oxygen ([tex]$O$[/tex]) with an atomic mass of approximately [tex]$16.00$[/tex] g/mol.
The molar mass is then calculated as follows:
[tex]$$
\text{Molar mass of } K_2SO_4 = 2(39.10) + 32.07 + 4(16.00)
$$[/tex]
Breaking down the calculation:
1. For potassium:
[tex]$$
2 \times 39.10 = 78.20 \text{ g/mol}
$$[/tex]
2. For sulfur:
[tex]$$
32.07 \text{ g/mol}
$$[/tex]
3. For oxygen:
[tex]$$
4 \times 16.00 = 64.00 \text{ g/mol}
$$[/tex]
Adding these gives:
[tex]$$
\text{Molar mass} = 78.20 + 32.07 + 64.00 = 174.27 \text{ g/mol}
$$[/tex]
Now, the mass of [tex]$5.00$[/tex] moles of [tex]$K_2SO_4$[/tex] can be found by multiplying the number of moles by the molar mass:
[tex]$$
\text{Mass} = 5.00 \text{ moles} \times 174.27 \text{ g/mol} = 871.35 \text{ g}
$$[/tex]
Thus, the mass of [tex]$5.00$[/tex] moles of [tex]$K_2SO_4$[/tex] is [tex]$871.35$[/tex] grams.