High School

What is the product of the expression?

\[ (-2x - 9y^2)(-4x - 3) \]

A. \(-8x^2 - 6x - 36xy^2 - 27y^2\)

B. \(-14x^2 - 36xy^2 + 27y^2\)

C. \(8x^2 + 6x + 36xy^2 + 27y^2\)

D. \(14x^2 + 36xy^2 + 27y^2\)

Answer :

Certainly! Let's solve the problem step by step:

We need to find the product of the expression [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex].

To do this, we'll use the distributive property (also known as the FOIL method for binomials).

1. Distribute [tex]\(-2x\)[/tex] across [tex]\((-4x - 3)\)[/tex]:

- Multiply [tex]\(-2x\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\[
-2x \times -4x = 8x^2
\][/tex]

- Multiply [tex]\(-2x\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[
-2x \times -3 = 6x
\][/tex]

2. Distribute [tex]\(-9y^2\)[/tex] across [tex]\((-4x - 3)\)[/tex]:

- Multiply [tex]\(-9y^2\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\[
-9y^2 \times -4x = 36xy^2
\][/tex]

- Multiply [tex]\(-9y^2\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[
-9y^2 \times -3 = 27y^2
\][/tex]

3. Combine all the products:

Now add all the results together:
[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]

So, the final product of the expression is:
[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]

This matches the choice [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex], which is the correct answer.