High School

What is the domain of the function [tex]h[/tex]?

[tex]h(x) = \sqrt{x - 7} + 5[/tex]

A. [tex] x \geq 7[/tex]
B. [tex] x \leq -7[/tex]
C. [tex] x \leq 5[/tex]
D. [tex] x \geq 5[/tex]

Answer :

To determine the domain of the function [tex]\( n'(x) = \sqrt{x - 7} + 5 \)[/tex], we need to ensure that all parts of the function are defined for the values of [tex]\( x \)[/tex] we consider.

1. Identify the parts of the function: The function involves a square root, [tex]\(\sqrt{x - 7}\)[/tex].

2. Determine the requirement for the square root: For the square root to be defined, the expression inside it must be non-negative. This means:
[tex]\[
x - 7 \geq 0
\][/tex]

3. Solve the inequality:
[tex]\[
x - 7 \geq 0
\][/tex]
Adding 7 to both sides gives:
[tex]\[
x \geq 7
\][/tex]

4. Conclusion about the domain: The function [tex]\( n'(x) = \sqrt{x - 7} + 5 \)[/tex] is defined for all values of [tex]\( x \)[/tex] where [tex]\( x \geq 7 \)[/tex].

Therefore, the domain of the function is [tex]\( x \geq 7 \)[/tex], which corresponds to option A.