High School

What is the cube root of [tex]$8x^{27}$[/tex]?

A. [tex]$2x^3$[/tex]
B. [tex]$2x^9$[/tex]
C. [tex]$4x^3$[/tex]
D. [tex]$4x^9$[/tex]

Answer :

To find the cube root of
[tex]$$8 x^{27},$$[/tex]
we can break the expression into two parts and simplify them separately.

1. First, consider the constant:
[tex]$$\sqrt[3]{8} = 2,$$[/tex]
since [tex]$2^3 = 8.$[/tex]

2. Next, consider the variable part:
[tex]$$\sqrt[3]{x^{27}} = x^{27/3} = x^9.$$[/tex]

3. Combining these results, we have:
[tex]$$\sqrt[3]{8 x^{27}} = 2 x^9.$$[/tex]

Thus, the cube root of [tex]$8 x^{27}$[/tex] is [tex]$\boxed{2 x^9}$[/tex].