High School

What is [tex]\left(5x^2 - 6x + 38\right) + (-x - 11)[/tex]?

A. [tex]5x^2 - 5x + 27[/tex]
B. [tex]5x^2 - 5x + 49[/tex]
C. [tex]5x^2 - 7x + 27[/tex]
D. [tex]5x^2 - 7x + 49[/tex]

Answer :

To simplify the expression
[tex]$$
(5x^2 - 6x + 38) + (-x - 11),
$$[/tex]
follow these steps:

1. Remove Parentheses:
Write the expression without the parentheses:
[tex]$$
5x^2 - 6x + 38 - x - 11.
$$[/tex]

2. Combine Like Terms:
- For the [tex]$x^2$[/tex] terms, there is only one:
[tex]$$
5x^2.
$$[/tex]
- For the [tex]$x$[/tex] terms, combine [tex]$-6x$[/tex] and [tex]$-x$[/tex]:
[tex]$$
-6x - x = -7x.
$$[/tex]
- For the constant terms, combine [tex]$38$[/tex] and [tex]$-11$[/tex]:
[tex]$$
38 - 11 = 27.
$$[/tex]

3. Write the Final Expression:
Putting all the combined terms together, we have:
[tex]$$
5x^2 - 7x + 27.
$$[/tex]

Thus, the answer is
[tex]$$
\boxed{5x^2 - 7x + 27}.
$$[/tex]