College

What is [tex]\left(3x^4 + 2x^2 - 6\right)[/tex] subtracted from [tex]\left(4x^4 + 2x^2 - 6\right)[/tex]?

A. [tex]x^4 + 5x^2 - 9[/tex]
B. [tex]-x^4[/tex]
C. [tex]7x^4 - x^2 - 9[/tex]
D. [tex]x^4[/tex]
E. [tex]x^4 - x^2 - 3[/tex]

Answer :

To solve the problem of subtracting [tex]\((3x^4 + 2x^2 - 6)\)[/tex] from [tex]\((4x^4 + 2x^2 - 6)\)[/tex], we follow these steps:

1. Write Down the Expressions:
- The first polynomial is [tex]\((4x^4 + 2x^2 - 6)\)[/tex].
- The second polynomial is [tex]\((3x^4 + 2x^2 - 6)\)[/tex].

2. Set Up the Subtraction:
- We want to subtract the second polynomial from the first polynomial:
[tex]\(\left(4x^4 + 2x^2 - 6\right) - \left(3x^4 + 2x^2 - 6\right)\)[/tex].

3. Apply the Subtraction:
- Distribute the subtraction sign through the second polynomial:
[tex]\[4x^4 + 2x^2 - 6 - 3x^4 - 2x^2 + 6.\][/tex]

4. Combine Like Terms:
- Combine terms involving [tex]\(x^4\)[/tex]: [tex]\(4x^4 - 3x^4 = x^4\)[/tex].
- Combine terms involving [tex]\(x^2\)[/tex]: [tex]\(2x^2 - 2x^2 = 0\)[/tex].
- Combine constant terms: [tex]\(-6 + 6 = 0\)[/tex].

5. Write the Result:
- The simplified result after combining like terms is [tex]\(x^4\)[/tex].

Therefore, the result of [tex]\((3x^4 + 2x^2 - 6)\)[/tex] subtracted from [tex]\((4x^4 + 2x^2 - 6)\)[/tex] is [tex]\(x^4\)[/tex].