Answer :
First, convert the temperature from Celsius to Kelvin:
$$
T = 830.7 + 273.15 = 1103.85~\text{K}.
$$
Next, use the ideal gas law to find the number of moles. The ideal gas law is:
$$
PV = nRT,
$$
which can be rearranged to solve for the number of moles ($n$):
$$
n = \frac{PV}{RT}.
$$
Substitute the known values:
- Pressure, $P = 5.5~\text{atm}$
- Volume, $V = 4.4~\text{L}$
- Ideal Gas Constant, $R = 0.082057~\text{L atm/(mol·K)}$
- Temperature, $T = 1103.85~\text{K}$
Calculate the numerator:
$$
P \times V = 5.5 \times 4.4 = 24.2.
$$
Then the denominator:
$$
R \times T = 0.082057 \times 1103.85 \approx 90.5786.
$$
Now, compute the number of moles:
$$
n = \frac{24.2}{90.5786} \approx 0.26717~\text{mol}.
$$
Next, find the mass of the gas using the molar mass:
$$
\text{mass} = n \times \text{molar mass}.
$$
The molar mass is $98.2~\text{g/mol}$, so:
$$
\text{mass} = 0.26717 \times 98.2 \approx 26.2362~\text{g}.
$$
Finally, rounding the mass to one decimal place gives:
$$
26.2~\text{g}.
$$
Thus, the mass of the gas in the container is $\boxed{26.2~\text{g}}$.
$$
T = 830.7 + 273.15 = 1103.85~\text{K}.
$$
Next, use the ideal gas law to find the number of moles. The ideal gas law is:
$$
PV = nRT,
$$
which can be rearranged to solve for the number of moles ($n$):
$$
n = \frac{PV}{RT}.
$$
Substitute the known values:
- Pressure, $P = 5.5~\text{atm}$
- Volume, $V = 4.4~\text{L}$
- Ideal Gas Constant, $R = 0.082057~\text{L atm/(mol·K)}$
- Temperature, $T = 1103.85~\text{K}$
Calculate the numerator:
$$
P \times V = 5.5 \times 4.4 = 24.2.
$$
Then the denominator:
$$
R \times T = 0.082057 \times 1103.85 \approx 90.5786.
$$
Now, compute the number of moles:
$$
n = \frac{24.2}{90.5786} \approx 0.26717~\text{mol}.
$$
Next, find the mass of the gas using the molar mass:
$$
\text{mass} = n \times \text{molar mass}.
$$
The molar mass is $98.2~\text{g/mol}$, so:
$$
\text{mass} = 0.26717 \times 98.2 \approx 26.2362~\text{g}.
$$
Finally, rounding the mass to one decimal place gives:
$$
26.2~\text{g}.
$$
Thus, the mass of the gas in the container is $\boxed{26.2~\text{g}}$.