High School

What is [tex]\left(3x^4 + 2 - 2x^3\right) + \left(4x^3 + 4x^4\right)[/tex]?

A. [tex]7x^4 + 2x^3 + 2[/tex]
B. [tex]7x^7 + x^6 + 2[/tex]
C. [tex]7x^4 + 7x^3 + 2[/tex]
D. [tex]7x^7 + 2x + 2[/tex]

Answer :

We are given the expression
[tex]$$
\left(3x^4 + 2 - 2x^3\right) + \left(4x^3 + 4x^4\right).
$$[/tex]

Step 1. Remove the parentheses

Since the expression is a sum, we can drop the parentheses:
[tex]$$
3x^4 + 2 - 2x^3 + 4x^3 + 4x^4.
$$[/tex]

Step 2. Combine like terms

Group the terms with the same powers of [tex]$x$[/tex]:

- For the [tex]$x^4$[/tex] terms:
[tex]$$
3x^4 + 4x^4 = 7x^4.
$$[/tex]

- For the [tex]$x^3$[/tex] terms:
[tex]$$
-2x^3 + 4x^3 = 2x^3.
$$[/tex]

- The constant term remains:
[tex]$$
2.
$$[/tex]

Step 3. Write the simplified expression

After combining like terms, the simplified expression is:
[tex]$$
7x^4 + 2x^3 + 2.
$$[/tex]

This matches option A:
[tex]$$
7x^4+2x^3+2.
$$[/tex]

Thus, the answer is [tex]$\boxed{7 x^4+2 x^3+2}$[/tex].