Answer :
To solve this problem, we want to understand what [tex]$C(76.1)$[/tex] represents using the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex].
1. Understand the Function:
- The function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] is used to convert temperatures from degrees Fahrenheit to degrees Celsius.
2. Identify the Input:
- The input given is [tex]\( F = 76.1 \)[/tex] degrees Fahrenheit.
3. Compute [tex]\( C(76.1) \)[/tex]:
- Substitute [tex]\( F = 76.1 \)[/tex] into the function:
[tex]\[
C(76.1) = \frac{5}{9}(76.1 - 32)
\][/tex]
4. Calculate:
- Simplify within the parentheses:
[tex]\[
76.1 - 32 = 44.1
\][/tex]
- Apply the fraction:
[tex]\[
C(76.1) = \frac{5}{9} \times 44.1
\][/tex]
- This calculation gives approximately [tex]\( 24.5 \)[/tex] degrees Celsius.
5. Conclusion:
- Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
The correct choice from the given options is: the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
1. Understand the Function:
- The function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] is used to convert temperatures from degrees Fahrenheit to degrees Celsius.
2. Identify the Input:
- The input given is [tex]\( F = 76.1 \)[/tex] degrees Fahrenheit.
3. Compute [tex]\( C(76.1) \)[/tex]:
- Substitute [tex]\( F = 76.1 \)[/tex] into the function:
[tex]\[
C(76.1) = \frac{5}{9}(76.1 - 32)
\][/tex]
4. Calculate:
- Simplify within the parentheses:
[tex]\[
76.1 - 32 = 44.1
\][/tex]
- Apply the fraction:
[tex]\[
C(76.1) = \frac{5}{9} \times 44.1
\][/tex]
- This calculation gives approximately [tex]\( 24.5 \)[/tex] degrees Celsius.
5. Conclusion:
- Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
The correct choice from the given options is: the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.