Answer :
We want to find the numbers [tex]$x$[/tex] that satisfy
[tex]$$
x^2 = 169.
$$[/tex]
A number squared equals 169 if and only if [tex]$x$[/tex] is either positive or negative 13, because
[tex]$$
13^2 = 169 \quad \text{and} \quad (-13)^2 = 169.
$$[/tex]
Thus, we conclude:
- The positive square root of [tex]$169$[/tex] is [tex]$13$[/tex].
- The negative square root of [tex]$169$[/tex] is [tex]$-13$[/tex].
So the two numbers are [tex]$13$[/tex] and [tex]$-13$[/tex].
[tex]$$
x^2 = 169.
$$[/tex]
A number squared equals 169 if and only if [tex]$x$[/tex] is either positive or negative 13, because
[tex]$$
13^2 = 169 \quad \text{and} \quad (-13)^2 = 169.
$$[/tex]
Thus, we conclude:
- The positive square root of [tex]$169$[/tex] is [tex]$13$[/tex].
- The negative square root of [tex]$169$[/tex] is [tex]$-13$[/tex].
So the two numbers are [tex]$13$[/tex] and [tex]$-13$[/tex].