High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ The area of a rectangle, [tex]A = l \cdot w[/tex], is represented by the expression [tex]24 x^6 y^{15}[/tex]. Which could be the dimensions of the rectangle?

A. [tex]2 x^5 y^8[/tex] and [tex]12 x y^7[/tex]

B. [tex]6 x^2 y^3[/tex] and [tex]4 x^3 y^5[/tex]

C. [tex]10 x^6 y^{15}[/tex] and [tex]14 x^6 y^{15}[/tex]

D. [tex]9 x^4 y^{11}[/tex] and [tex]12 x^2 y^4[/tex]

Answer :

To find the dimensions of the rectangle whose area is given by [tex]\(24x^6y^{15}\)[/tex], we need to identify two expressions that multiply together to produce this area.

Let's evaluate each option one by one:

1. Option 1: [tex]\(2x^5y^8\)[/tex] and [tex]\(12xy^7\)[/tex]

To check if these dimensions are correct, multiply the two expressions:

[tex]\[
(2x^5y^8) \times (12xy^7) = (2 \times 12) \times (x^5 \times x^1) \times (y^8 \times y^7)
\][/tex]

Simplifying, we get:

[tex]\[
24x^{5+1}y^{8+7} = 24x^6y^{15}
\][/tex]

This matches the given area. Therefore, these dimensions are correct.

2. Option 2: [tex]\(6x^2y^3\)[/tex] and [tex]\(4x^3y^5\)[/tex]

Multiply these terms:

[tex]\[
(6x^2y^3) \times (4x^3y^5) = (6 \times 4) \times (x^{2+3}) \times (y^{3+5})
\][/tex]

Simplifying, we get:

[tex]\[
24x^5y^8
\][/tex]

This doesn't match the given area [tex]\(24x^6y^{15}\)[/tex].

3. Option 3: [tex]\(10x^6y^{15}\)[/tex] and [tex]\(14x^6y^{15}\)[/tex]

Multiply these terms:

[tex]\[
(10x^6y^{15}) \times (14x^6y^{15}) = (10 \times 14) \times (x^{6+6}) \times (y^{15+15})
\][/tex]

Simplifying, we get:

[tex]\[
140x^{12}y^{30}
\][/tex]

This doesn't match the given area [tex]\(24x^6y^{15}\)[/tex].

4. Option 4: [tex]\(9x^4y^{11}\)[/tex] and [tex]\(12x^2y^4\)[/tex]

Multiply these terms:

[tex]\[
(9x^4y^{11}) \times (12x^2y^4) = (9 \times 12) \times (x^{4+2}) \times (y^{11+4})
\][/tex]

Simplifying, we get:

[tex]\[
108x^6y^{15}
\][/tex]

This also doesn't match the given area [tex]\(24x^6y^{15}\)[/tex].

Therefore, the correct dimensions of the rectangle are [tex]\(2x^5y^8\)[/tex] and [tex]\(12xy^7\)[/tex], as they multiply to give the area [tex]\(24x^6y^{15}\)[/tex].