Answer :
To find the value of [tex]\( c \)[/tex], we start with the equation given in the problem:
[tex]\[ f = c \times d^3 \][/tex]
We are given that [tex]\( f = 450 \)[/tex] and [tex]\( d = 10 \)[/tex]. Our goal is to solve for [tex]\( c \)[/tex].
Step 1: Calculate [tex]\( d^3 \)[/tex].
Since [tex]\( d = 10 \)[/tex], we have:
[tex]\[ d^3 = 10^3 = 1000 \][/tex]
Step 2: Rearrange the equation to solve for [tex]\( c \)[/tex].
By rearranging the equation [tex]\( f = c \times d^3 \)[/tex], we get:
[tex]\[ c = \frac{f}{d^3} \][/tex]
Step 3: Substitute the known values into the equation.
Now we substitute [tex]\( f = 450 \)[/tex] and [tex]\( d^3 = 1000 \)[/tex] into the equation for [tex]\( c \)[/tex]:
[tex]\[ c = \frac{450}{1000} \][/tex]
Step 4: Simplify the fraction to find [tex]\( c \)[/tex].
[tex]\[ c = 0.45 \][/tex]
Therefore, the value of [tex]\( c \)[/tex] is [tex]\( 0.45 \)[/tex].
[tex]\[ f = c \times d^3 \][/tex]
We are given that [tex]\( f = 450 \)[/tex] and [tex]\( d = 10 \)[/tex]. Our goal is to solve for [tex]\( c \)[/tex].
Step 1: Calculate [tex]\( d^3 \)[/tex].
Since [tex]\( d = 10 \)[/tex], we have:
[tex]\[ d^3 = 10^3 = 1000 \][/tex]
Step 2: Rearrange the equation to solve for [tex]\( c \)[/tex].
By rearranging the equation [tex]\( f = c \times d^3 \)[/tex], we get:
[tex]\[ c = \frac{f}{d^3} \][/tex]
Step 3: Substitute the known values into the equation.
Now we substitute [tex]\( f = 450 \)[/tex] and [tex]\( d^3 = 1000 \)[/tex] into the equation for [tex]\( c \)[/tex]:
[tex]\[ c = \frac{450}{1000} \][/tex]
Step 4: Simplify the fraction to find [tex]\( c \)[/tex].
[tex]\[ c = 0.45 \][/tex]
Therefore, the value of [tex]\( c \)[/tex] is [tex]\( 0.45 \)[/tex].