High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Use Pascal's triangle to expand each binomial. Expand \((x - 5y)^5\).

Options:
A. \(y^5 - 5y^4x + 25y^3x^2 - 125y^2x^3 + 625yx^4 - 3125x^5\)

B. \(x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5\)

C. \(x^5 - 25x^4y + 250x^3y^2 - 1250x^2y^3 + 3125xy^4 - 3125y^5\)

D. \(x^5 - 5x^4y + 25x^3y^2 - 125x^2y^3 + 625xy^4 - 3125y^5\)

Answer :

Final answer:

To expand the binomial (x - 5y)⁵ using Pascal's triangle, we can use the binomial theorem. The correct expansion is option a. y⁵ - 5y⁴x + 25y³x² - 125y²x³ + 625yx⁴ - 3125x⁵.

Explanation:

To expand the binomial (x - 5y)⁵ using Pascal's triangle, we will use the binomial theorem. The binomial theorem states that (a + b)ⁿ can be expanded as aⁿ + (nC1) * aⁿ⁻¹ * b + (nC2) * aⁿ⁻² * b² + ... + bⁿ, where n is the exponent and nCk represents the binomial coefficient.

In this case, we have (x - 5y)⁵. To expand it, we will substitute x and y into the formula, using the binomial coefficient for each term.

The correct expansion is option a. y⁵ - 5y⁴x + 25y³x² - 125y²x³ + 625yx⁴ - 3125x⁵.