Answer :
We start with the titration of a 25.0 mL sample of saturated calcium hydroxide, [tex]$\text{Ca(OH)}_2$[/tex], with 0.028 M hydrochloric acid, [tex]$\text{HCl}$[/tex]. The reaction involved is:
[tex]$$
\text{Ca(OH)}_2 + 2\,\text{HCl} \to \text{CaCl}_2 + 2\,\text{H}_2\text{O}
$$[/tex]
Step 1. Calculate the moles of [tex]$\text{HCl}$[/tex] used.
Convert the volume of [tex]$\text{HCl}$[/tex] from milliliters to liters:
[tex]$$
V_{\text{HCl}} = 38.1\,\text{mL} = 0.0381\,\text{L}
$$[/tex]
Now, calculate the moles of [tex]$\text{HCl}$[/tex]:
[tex]$$
n_{\text{HCl}} = C_{\text{HCl}} \times V_{\text{HCl}} = 0.028\,\text{M} \times 0.0381\,\text{L} = 0.0010668\,\text{mol}
$$[/tex]
Step 2. Determine the moles of [tex]$\text{Ca(OH)}_2$[/tex].
Based on the balanced chemical reaction, 1 mole of [tex]$\text{Ca(OH)}_2$[/tex] reacts with 2 moles of [tex]$\text{HCl}$[/tex]. Therefore, the moles of [tex]$\text{Ca(OH)}_2$[/tex] are half of the moles of [tex]$\text{HCl}$[/tex]:
[tex]$$
n_{\text{Ca(OH)}_2} = \frac{n_{\text{HCl}}}{2} = \frac{0.0010668\,\text{mol}}{2} = 0.0005334\,\text{mol}
$$[/tex]
Step 3. Calculate the concentration of [tex]$\text{Ca(OH)}_2$[/tex].
First, convert the sample volume from mL to L:
[tex]$$
V_{\text{sample}} = 25.0\,\text{mL} = 0.025\,\text{L}
$$[/tex]
Now, calculate the concentration using the formula:
[tex]$$
[\text{Ca(OH)}_2] = \frac{n_{\text{Ca(OH)}_2}}{V_{\text{sample}}} = \frac{0.0005334\,\text{mol}}{0.025\,\text{L}} = 0.021336\,\text{M}
$$[/tex]
Thus, the concentration of the saturated [tex]$\text{Ca(OH)}_2$[/tex] solution is:
[tex]$$
\boxed{0.021336\,\text{M}}
$$[/tex]
[tex]$$
\text{Ca(OH)}_2 + 2\,\text{HCl} \to \text{CaCl}_2 + 2\,\text{H}_2\text{O}
$$[/tex]
Step 1. Calculate the moles of [tex]$\text{HCl}$[/tex] used.
Convert the volume of [tex]$\text{HCl}$[/tex] from milliliters to liters:
[tex]$$
V_{\text{HCl}} = 38.1\,\text{mL} = 0.0381\,\text{L}
$$[/tex]
Now, calculate the moles of [tex]$\text{HCl}$[/tex]:
[tex]$$
n_{\text{HCl}} = C_{\text{HCl}} \times V_{\text{HCl}} = 0.028\,\text{M} \times 0.0381\,\text{L} = 0.0010668\,\text{mol}
$$[/tex]
Step 2. Determine the moles of [tex]$\text{Ca(OH)}_2$[/tex].
Based on the balanced chemical reaction, 1 mole of [tex]$\text{Ca(OH)}_2$[/tex] reacts with 2 moles of [tex]$\text{HCl}$[/tex]. Therefore, the moles of [tex]$\text{Ca(OH)}_2$[/tex] are half of the moles of [tex]$\text{HCl}$[/tex]:
[tex]$$
n_{\text{Ca(OH)}_2} = \frac{n_{\text{HCl}}}{2} = \frac{0.0010668\,\text{mol}}{2} = 0.0005334\,\text{mol}
$$[/tex]
Step 3. Calculate the concentration of [tex]$\text{Ca(OH)}_2$[/tex].
First, convert the sample volume from mL to L:
[tex]$$
V_{\text{sample}} = 25.0\,\text{mL} = 0.025\,\text{L}
$$[/tex]
Now, calculate the concentration using the formula:
[tex]$$
[\text{Ca(OH)}_2] = \frac{n_{\text{Ca(OH)}_2}}{V_{\text{sample}}} = \frac{0.0005334\,\text{mol}}{0.025\,\text{L}} = 0.021336\,\text{M}
$$[/tex]
Thus, the concentration of the saturated [tex]$\text{Ca(OH)}_2$[/tex] solution is:
[tex]$$
\boxed{0.021336\,\text{M}}
$$[/tex]