Answer :
We are given the stopping distance function
[tex]$$
D(F) = 2F + 115.
$$[/tex]
To find [tex]$D(13)$[/tex], substitute [tex]$F = 13$[/tex] into the function:
[tex]$$
D(13) = 2(13) + 115.
$$[/tex]
First, calculate the multiplication:
[tex]$$
2 \times 13 = 26.
$$[/tex]
Then, add [tex]$115$[/tex]:
[tex]$$
26 + 115 = 141.
$$[/tex]
Thus, the value of [tex]$D(13)$[/tex] is [tex]$\boxed{141}$[/tex].
[tex]$$
D(F) = 2F + 115.
$$[/tex]
To find [tex]$D(13)$[/tex], substitute [tex]$F = 13$[/tex] into the function:
[tex]$$
D(13) = 2(13) + 115.
$$[/tex]
First, calculate the multiplication:
[tex]$$
2 \times 13 = 26.
$$[/tex]
Then, add [tex]$115$[/tex]:
[tex]$$
26 + 115 = 141.
$$[/tex]
Thus, the value of [tex]$D(13)$[/tex] is [tex]$\boxed{141}$[/tex].