College

The stopping distance (at some fixed speed) of regular tires on glare ice is a function of the air temperature [tex]F[/tex], in degrees Fahrenheit. This function is estimated by [tex]D(F)=2F+115[/tex].

Find the following values:

1. [tex]D(0)=115[/tex]

2. [tex]D(-30)=\square[/tex]

Answer :

Sure! Let's find the stopping distance for the given air temperatures using the function provided.

The function given is [tex]\( D(F) = 2F + 115 \)[/tex], where [tex]\( F \)[/tex] is the temperature in degrees Fahrenheit and [tex]\( D(F) \)[/tex] is the stopping distance.

1. Find [tex]\( D(0) \)[/tex]:

- Plug in [tex]\( F = 0 \)[/tex] into the function.
- [tex]\( D(0) = 2 \times 0 + 115 \)[/tex]
- [tex]\( D(0) = 0 + 115 \)[/tex]
- [tex]\( D(0) = 115 \)[/tex]

So, the stopping distance at 0 degrees Fahrenheit is 115.

2. Find [tex]\( D(-30) \)[/tex]:

- Plug in [tex]\( F = -30 \)[/tex] into the function.
- [tex]\( D(-30) = 2 \times (-30) + 115 \)[/tex]
- [tex]\( D(-30) = -60 + 115 \)[/tex]
- [tex]\( D(-30) = 55 \)[/tex]

So, the stopping distance at -30 degrees Fahrenheit is 55.

Therefore, the answers are:
- [tex]\( D(0) = 115 \)[/tex]
- [tex]\( D(-30) = 55 \)[/tex]