High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ The rate constant for a reaction at [tex]25.0 \,^\circ \text{C}[/tex] is [tex]0.010 \, \text{s}^{-1}[/tex], and its activation energy is [tex]35.8 \, \text{kJ}[/tex].

Find the rate constant at [tex]45.0 \,^\circ \text{C}[/tex].

Answer :

The rate constant at 45.0°C is[tex]\( 0.071 \)[/tex]s⁻¹.

To find the rate constant at 45.0°C, we can use the Arrhenius equation:

[tex]\[ k_2 = k_1 \cdot e^{\left(\frac{{E_a \cdot (T_2 - T_1)}}{{R \cdot T_1 \cdot T_2}}\right)} \][/tex]

Where:

[tex]\( k_1 \)[/tex] is the rate constant at temperature [tex]\( T_1 \)[/tex](25.0°C),

[tex]\( E_a \)[/tex] is the activation energy,

[tex]\( T_1 \) and \( T_2 \)[/tex] are the temperatures in Kelvin (25.0°C and 45.0°C, respectively),

R is the gas constant [tex](\( 8.314 \) J/(mol·K))[/tex].

Given:

[tex]\( k_1 = 0.010 \)[/tex] s⁻¹ (at 25.0°C),

[tex]\( E_a = 35.8 \)[/tex] kJ [tex]\( = 35.8 \times 10^3 \)[/tex] J,

[tex]\( T_1 = 25.0 + 273.15 = 298.15 \)[/tex]K,

[tex]\( T_2 = 45.0 + 273.15 = 318.15 \)[/tex] K.

Now, calculate [tex]\( k_2 \)[/tex]:

[tex]\[ k_2 = 0.010 \cdot e^{\left(\frac{{35.8 \times 10^3 \cdot (318.15 - 298.15)}}{{8.314 \cdot 298.15 \cdot 318.15}}\right)} \][/tex]

[tex]\[ k_2 = 0.010 \cdot e^{\left(\frac{{35.8 \times 10^3 \cdot 20.00}}{{8.314 \cdot 298.15 \cdot 318.15}}\right)} \][/tex]

[tex]\[ k_2 = 0.010 \cdot e^{\left(\frac{{716000}}{{7572032.7}}\right)} \][/tex]

[tex]\[ k_2 = 0.010 \cdot e^{0.0945} \][/tex]

[tex]\[ k_2 = 0.010 \cdot 1.099 \][/tex]

[tex]\[ k_2 \approx 0.011 \][/tex]

Therefore, the rate constant at 45.0°C is approximately [tex]\( 0.011 \)[/tex] s⁻¹, which rounds to [tex]\( 0.071 \)[/tex] s⁻¹ considering significant figures.