College

The product of two consecutive negative integers is 600. What is the value of the lesser integer?

A. -60
B. -30
C. -25
D. -15

Answer :

Let the two consecutive negative integers be [tex]$n$[/tex] and [tex]$n+1$[/tex]. Their product is given by

[tex]$$
n(n+1) = 600.
$$[/tex]

Expanding the left side, we obtain

[tex]$$
n^2 + n = 600.
$$[/tex]

To form a quadratic equation, subtract [tex]$600$[/tex] from both sides:

[tex]$$
n^2 + n - 600 = 0.
$$[/tex]

Now, we will solve this quadratic equation using the quadratic formula:

[tex]$$
n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a},
$$[/tex]

where [tex]$a=1$[/tex], [tex]$b=1$[/tex], and [tex]$c=-600$[/tex]. First, compute the discriminant:

[tex]$$
\Delta = b^2 - 4ac = 1^2 - 4(1)(-600)= 1 + 2400 = 2401.
$$[/tex]

Taking the square root of [tex]$\Delta$[/tex],

[tex]$$
\sqrt{2401} = 49.
$$[/tex]

Now substitute into the quadratic formula:

[tex]$$
n = \frac{-1 \pm 49}{2}.
$$[/tex]

This gives two solutions:

1.
[tex]$$
n = \frac{-1 + 49}{2} = \frac{48}{2} = 24,
$$[/tex]

2.
[tex]$$
n = \frac{-1 - 49}{2} = \frac{-50}{2} = -25.
$$[/tex]

Since we are looking for two consecutive negative integers, we select the negative solution. Therefore, the two integers are [tex]$-25$[/tex] and [tex]$-24$[/tex].

Thus, the value of the lesser integer is

[tex]$$
\boxed{-25}.
$$[/tex]