Answer :
We are given the formula for the period of a pendulum:
[tex]$$
T = 2\pi \sqrt{\frac{L}{32}},
$$[/tex]
where:
- [tex]$T$[/tex] is the period (in seconds),
- [tex]$\pi = 3.14$[/tex] (approximation), and
- [tex]$L$[/tex] is the length of the pendulum (in feet).
Given that [tex]$T = 1.57$[/tex] seconds, we need to solve for [tex]$L$[/tex]. Follow these steps:
1. Substitute the given value into the equation:
[tex]$$
1.57 = 2 \cdot 3.14 \cdot \sqrt{\frac{L}{32}}.
$$[/tex]
2. Simplify the constant term:
Compute [tex]$2 \cdot 3.14$[/tex]:
[tex]$$
2 \cdot 3.14 = 6.28.
$$[/tex]
Now the equation becomes:
[tex]$$
1.57 = 6.28 \sqrt{\frac{L}{32}}.
$$[/tex]
3. Isolate the square root term:
Divide both sides by [tex]$6.28$[/tex]:
[tex]$$
\sqrt{\frac{L}{32}} = \frac{1.57}{6.28}.
$$[/tex]
Notice that:
[tex]$$
\frac{1.57}{6.28} = 0.25.
$$[/tex]
4. Eliminate the square root by squaring both sides:
[tex]$$
\left(\sqrt{\frac{L}{32}}\right)^2 = (0.25)^2,
$$[/tex]
which simplifies to:
[tex]$$
\frac{L}{32} = 0.0625.
$$[/tex]
5. Solve for [tex]$L$[/tex]:
Multiply both sides by [tex]$32$[/tex]:
[tex]$$
L = 32 \times 0.0625.
$$[/tex]
Calculating this:
[tex]$$
L = 2.
$$[/tex]
Thus, the length of the pendulum is [tex]$\boxed{2\ \text{feet}}$[/tex].
[tex]$$
T = 2\pi \sqrt{\frac{L}{32}},
$$[/tex]
where:
- [tex]$T$[/tex] is the period (in seconds),
- [tex]$\pi = 3.14$[/tex] (approximation), and
- [tex]$L$[/tex] is the length of the pendulum (in feet).
Given that [tex]$T = 1.57$[/tex] seconds, we need to solve for [tex]$L$[/tex]. Follow these steps:
1. Substitute the given value into the equation:
[tex]$$
1.57 = 2 \cdot 3.14 \cdot \sqrt{\frac{L}{32}}.
$$[/tex]
2. Simplify the constant term:
Compute [tex]$2 \cdot 3.14$[/tex]:
[tex]$$
2 \cdot 3.14 = 6.28.
$$[/tex]
Now the equation becomes:
[tex]$$
1.57 = 6.28 \sqrt{\frac{L}{32}}.
$$[/tex]
3. Isolate the square root term:
Divide both sides by [tex]$6.28$[/tex]:
[tex]$$
\sqrt{\frac{L}{32}} = \frac{1.57}{6.28}.
$$[/tex]
Notice that:
[tex]$$
\frac{1.57}{6.28} = 0.25.
$$[/tex]
4. Eliminate the square root by squaring both sides:
[tex]$$
\left(\sqrt{\frac{L}{32}}\right)^2 = (0.25)^2,
$$[/tex]
which simplifies to:
[tex]$$
\frac{L}{32} = 0.0625.
$$[/tex]
5. Solve for [tex]$L$[/tex]:
Multiply both sides by [tex]$32$[/tex]:
[tex]$$
L = 32 \times 0.0625.
$$[/tex]
Calculating this:
[tex]$$
L = 2.
$$[/tex]
Thus, the length of the pendulum is [tex]$\boxed{2\ \text{feet}}$[/tex].