High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ The line [tex]l_1[/tex] passes through the points [tex]P(-1, 2)[/tex] and [tex]Q(11, 8)[/tex]. The line [tex]l_2[/tex] passes through the point [tex]R(10, 0)[/tex] and is perpendicular to [tex]l_1[/tex]. The lines [tex]l_1[/tex] and [tex]l_2[/tex] intersect at the point [tex]S(7, 6)[/tex]. The length [tex]RS[/tex] is [tex]3 \sqrt{5}[/tex].

Hence, or otherwise, find the exact area of triangle [tex]PQR[/tex].

Answer :

Certainly! Let's find the exact area of triangle [tex]\( PQR \)[/tex] by using the coordinates of the points. We have:

- Point [tex]\( P \)[/tex] at [tex]\((-1, 2)\)[/tex]
- Point [tex]\( Q \)[/tex] at [tex]\((11, 8)\)[/tex]
- Point [tex]\( R \)[/tex] at [tex]\((10, 0)\)[/tex]

To calculate the area of triangle [tex]\( PQR \)[/tex], we can use the formula for the area of a triangle given its vertices [tex]\((x_1, y_1)\)[/tex], [tex]\((x_2, y_2)\)[/tex], and [tex]\((x_3, y_3)\)[/tex]:

[tex]\[
\text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right|
\][/tex]

Substitute the coordinates of [tex]\( P \)[/tex], [tex]\( Q \)[/tex], and [tex]\( R \)[/tex] into the formula:

- [tex]\( x_1 = -1, y_1 = 2 \)[/tex]
- [tex]\( x_2 = 11, y_2 = 8 \)[/tex]
- [tex]\( x_3 = 10, y_3 = 0 \)[/tex]

The formula becomes:

[tex]\[
\text{Area} = \frac{1}{2} \left| -1(8 - 0) + 11(0 - 2) + 10(2 - 8) \right|
\][/tex]

Calculate each term:

1. [tex]\( -1(8 - 0) = -1 \times 8 = -8 \)[/tex]
2. [tex]\( 11(0 - 2) = 11 \times (-2) = -22 \)[/tex]
3. [tex]\( 10(2 - 8) = 10 \times (-6) = -60 \)[/tex]

Add these values together to find the determinant:

[tex]\[
-8 - 22 - 60 = -90
\][/tex]

Now, take the absolute value of the determinant:

[tex]\[
|-90| = 90
\][/tex]

Finally, calculate the area by dividing by 2:

[tex]\[
\text{Area} = \frac{1}{2} \times 90 = 45
\][/tex]

Therefore, the exact area of triangle [tex]\( PQR \)[/tex] is 45 square units.