Answer :
To solve the problem of finding the length and width of a rectangle where the dimensions are consecutive even integers with an area of 120 square units, follow these steps:
1. Define the Variables:
Let's denote the length of the rectangle as [tex]\( l \)[/tex]. Since the width is the next consecutive even integer, it can be expressed as [tex]\( l + 2 \)[/tex].
2. Set Up the Area Equation:
The area of the rectangle can be calculated using the formula:
[tex]\[
\text{Area} = \text{length} \times \text{width}
\][/tex]
Given that the area is 120 square units, we can write:
[tex]\[
l \times (l + 2) = 120
\][/tex]
3. Formulate the Equation:
Simplify the equation to form a quadratic equation:
[tex]\[
l(l + 2) = 120
\][/tex]
[tex]\[
l^2 + 2l - 120 = 0
\][/tex]
4. Solve the Quadratic Equation:
To solve the quadratic equation [tex]\( l^2 + 2l - 120 = 0 \)[/tex], we can use the quadratic formula:
[tex]\[
l = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a}
\][/tex]
Here, [tex]\( a = 1 \)[/tex], [tex]\( b = 2 \)[/tex], and [tex]\( c = -120 \)[/tex]. Plugging in these values:
[tex]\[
l = \frac{{-2 \pm \sqrt{{2^2 - 4 \cdot 1 \cdot (-120)}}}}{2 \cdot 1}
\][/tex]
[tex]\[
l = \frac{{-2 \pm \sqrt{{4 + 480}}}}{2}
\][/tex]
[tex]\[
l = \frac{{-2 \pm \sqrt{484}}}{2}
\][/tex]
[tex]\[
l = \frac{{-2 \pm 22}}{2}
\][/tex]
This gives us two potential solutions:
[tex]\[
l = \frac{{-2 + 22}}{2} = \frac{20}{2} = 10
\][/tex]
[tex]\[
l = \frac{{-2 - 22}}{2} = \frac{-24}{2} = -12
\][/tex]
Since length cannot be negative, we discard [tex]\( l = -12 \)[/tex], leaving us with:
[tex]\[
l = 10
\][/tex]
5. Find the Width:
Using [tex]\( l = 10 \)[/tex], the width [tex]\( w \)[/tex] will be:
[tex]\[
w = l + 2 = 10 + 2 = 12
\][/tex]
6. Conclusion:
The length and width of the rectangle are [tex]\( 10 \)[/tex] units and [tex]\( 12 \)[/tex] units, respectively.
So, the length is 10 units and the width is 12 units.
1. Define the Variables:
Let's denote the length of the rectangle as [tex]\( l \)[/tex]. Since the width is the next consecutive even integer, it can be expressed as [tex]\( l + 2 \)[/tex].
2. Set Up the Area Equation:
The area of the rectangle can be calculated using the formula:
[tex]\[
\text{Area} = \text{length} \times \text{width}
\][/tex]
Given that the area is 120 square units, we can write:
[tex]\[
l \times (l + 2) = 120
\][/tex]
3. Formulate the Equation:
Simplify the equation to form a quadratic equation:
[tex]\[
l(l + 2) = 120
\][/tex]
[tex]\[
l^2 + 2l - 120 = 0
\][/tex]
4. Solve the Quadratic Equation:
To solve the quadratic equation [tex]\( l^2 + 2l - 120 = 0 \)[/tex], we can use the quadratic formula:
[tex]\[
l = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a}
\][/tex]
Here, [tex]\( a = 1 \)[/tex], [tex]\( b = 2 \)[/tex], and [tex]\( c = -120 \)[/tex]. Plugging in these values:
[tex]\[
l = \frac{{-2 \pm \sqrt{{2^2 - 4 \cdot 1 \cdot (-120)}}}}{2 \cdot 1}
\][/tex]
[tex]\[
l = \frac{{-2 \pm \sqrt{{4 + 480}}}}{2}
\][/tex]
[tex]\[
l = \frac{{-2 \pm \sqrt{484}}}{2}
\][/tex]
[tex]\[
l = \frac{{-2 \pm 22}}{2}
\][/tex]
This gives us two potential solutions:
[tex]\[
l = \frac{{-2 + 22}}{2} = \frac{20}{2} = 10
\][/tex]
[tex]\[
l = \frac{{-2 - 22}}{2} = \frac{-24}{2} = -12
\][/tex]
Since length cannot be negative, we discard [tex]\( l = -12 \)[/tex], leaving us with:
[tex]\[
l = 10
\][/tex]
5. Find the Width:
Using [tex]\( l = 10 \)[/tex], the width [tex]\( w \)[/tex] will be:
[tex]\[
w = l + 2 = 10 + 2 = 12
\][/tex]
6. Conclusion:
The length and width of the rectangle are [tex]\( 10 \)[/tex] units and [tex]\( 12 \)[/tex] units, respectively.
So, the length is 10 units and the width is 12 units.