Answer :
Let's break down the problem to find the domain and range of the function [tex]\( f(x) = -\frac{1}{4} x - 3 \)[/tex] given the interval [tex]\( -4 < x < 16 \)[/tex].
Domain:
The domain specifies the set of input values (x-values) for which the function is defined. According to the problem, the domain is given as [tex]\( -4 < x < 16 \)[/tex]. So we clearly omit options A and D.
Range:
To find the range, we need to determine the set of output values (y-values) that the function [tex]\( f(x) \)[/tex] can take when [tex]\( x \)[/tex] is within the given interval.
1. First, calculate the value of [tex]\( f(x) \)[/tex] at the endpoints of the interval:
- At [tex]\( x = -4 \)[/tex]:
[tex]\[
f(-4) = -\frac{1}{4}(-4) - 3 = 1 - 3 = -2
\][/tex]
- At [tex]\( x = 16 \)[/tex]:
[tex]\[
f(16) = -\frac{1}{4}(16) - 3 = -4 - 3 = -7
\][/tex]
2. Observing these values shows us that [tex]\( f(-4) = -2 \)[/tex] is the highest point and [tex]\( f(16) = -7 \)[/tex] is the lowest point.
3. Therefore, the range of the function [tex]\( f(x) \)[/tex] as [tex]\( x \)[/tex] goes from -4 to 16 is [tex]\( -2 > f(x) > -7 \)[/tex], which translates to the interval [tex]\( -7 < f(x) < -2 \)[/tex].
Given these observations, the correct choice is:
C. domain: [tex]\(-4 < x < 16\)[/tex]; range: [tex]\(-7 < f(x) < -2\)[/tex]
Domain:
The domain specifies the set of input values (x-values) for which the function is defined. According to the problem, the domain is given as [tex]\( -4 < x < 16 \)[/tex]. So we clearly omit options A and D.
Range:
To find the range, we need to determine the set of output values (y-values) that the function [tex]\( f(x) \)[/tex] can take when [tex]\( x \)[/tex] is within the given interval.
1. First, calculate the value of [tex]\( f(x) \)[/tex] at the endpoints of the interval:
- At [tex]\( x = -4 \)[/tex]:
[tex]\[
f(-4) = -\frac{1}{4}(-4) - 3 = 1 - 3 = -2
\][/tex]
- At [tex]\( x = 16 \)[/tex]:
[tex]\[
f(16) = -\frac{1}{4}(16) - 3 = -4 - 3 = -7
\][/tex]
2. Observing these values shows us that [tex]\( f(-4) = -2 \)[/tex] is the highest point and [tex]\( f(16) = -7 \)[/tex] is the lowest point.
3. Therefore, the range of the function [tex]\( f(x) \)[/tex] as [tex]\( x \)[/tex] goes from -4 to 16 is [tex]\( -2 > f(x) > -7 \)[/tex], which translates to the interval [tex]\( -7 < f(x) < -2 \)[/tex].
Given these observations, the correct choice is:
C. domain: [tex]\(-4 < x < 16\)[/tex]; range: [tex]\(-7 < f(x) < -2\)[/tex]