The composition of [tex]f(x, n \in 0, f(x, n))[/tex] is applied.

What are the coordinates of point 57?

A. [tex]\left(-\frac{3}{2}, \frac{3}{2}\right)[/tex]
B. [tex]\left(-\frac{20}{2}, \square\right)[/tex]
C. [tex]\left(\frac{3}{2}, -\frac{1}{2}\right)[/tex]
D. [tex]\left(-\frac{15}{2}, 0\right)[/tex]

Answer :

To find the coordinates of point 57, we need to identify which option correctly matches the given problem's context.

The coordinates provided by the solution are [tex]\((-1.5, 1.5)\)[/tex], which can be represented as a fraction [tex]\(\left(-\frac{3}{2}, \frac{3}{2}\right)\)[/tex].

Examining the multiple-choice options given:

1. [tex]\(\left(-\frac{3}{2}, \frac{3}{2}\right)\)[/tex] – This matches the coordinates we found.
2. [tex]\(\square-\frac{20}{2}\)[/tex] – This option is incomplete and doesn't provide a specific coordinate.
3. [tex]\(\left(\frac{3}{2}, -\frac{1}{2}\right)\)[/tex] – This doesn't match with our solution.
4. [tex]\(\left(-\frac{15}{2}, 0\right)\)[/tex] – This also doesn't match the solution.

Thus, the correct coordinates of point 57 are [tex]\(\left(-\frac{3}{2}, \frac{3}{2}\right)\)[/tex].