Answer :
To find the first term ([tex]\(a_1\)[/tex]) of an arithmetic progression (AP) where the common difference ([tex]\(d\)[/tex]) is -4 and the 10th term ([tex]\(a_{10}\)[/tex]) is -8, we will use the formula for the [tex]\(n\)[/tex]-th term of an AP.
The formula for the [tex]\(n\)[/tex]-th term of an AP is:
[tex]\[ a_n = a_1 + (n - 1) \cdot d \][/tex]
Given:
- Common difference ([tex]\(d\)[/tex]) = -4
- [tex]\(10^{\text{th}}\)[/tex] term ([tex]\(a_{10}\)[/tex]) = -8
- [tex]\(n\)[/tex] = 10
We need to find the first term ([tex]\(a_1\)[/tex]).
Step-by-step solution:
1. Write down the formula for the [tex]\(n\)[/tex]-th term:
[tex]\[ a_n = a_1 + (n - 1) \cdot d \][/tex]
2. Substitute the given values into the formula:
[tex]\[ -8 = a_1 + (10 - 1) \cdot (-4) \][/tex]
3. Simplify the expression inside the parentheses:
[tex]\[ -8 = a_1 + 9 \cdot (-4) \][/tex]
4. Multiply [tex]\(9\)[/tex] by [tex]\(-4\)[/tex]:
[tex]\[ -8 = a_1 - 36 \][/tex]
5. Rearrange the equation to solve for [tex]\(a_1\)[/tex] by adding 36 to both sides:
[tex]\[ a_1 = -8 + 36 \][/tex]
6. Simplify the right side of the equation:
[tex]\[ a_1 = 28 \][/tex]
Therefore, the first term of the arithmetic progression is [tex]\(28\)[/tex].
The formula for the [tex]\(n\)[/tex]-th term of an AP is:
[tex]\[ a_n = a_1 + (n - 1) \cdot d \][/tex]
Given:
- Common difference ([tex]\(d\)[/tex]) = -4
- [tex]\(10^{\text{th}}\)[/tex] term ([tex]\(a_{10}\)[/tex]) = -8
- [tex]\(n\)[/tex] = 10
We need to find the first term ([tex]\(a_1\)[/tex]).
Step-by-step solution:
1. Write down the formula for the [tex]\(n\)[/tex]-th term:
[tex]\[ a_n = a_1 + (n - 1) \cdot d \][/tex]
2. Substitute the given values into the formula:
[tex]\[ -8 = a_1 + (10 - 1) \cdot (-4) \][/tex]
3. Simplify the expression inside the parentheses:
[tex]\[ -8 = a_1 + 9 \cdot (-4) \][/tex]
4. Multiply [tex]\(9\)[/tex] by [tex]\(-4\)[/tex]:
[tex]\[ -8 = a_1 - 36 \][/tex]
5. Rearrange the equation to solve for [tex]\(a_1\)[/tex] by adding 36 to both sides:
[tex]\[ a_1 = -8 + 36 \][/tex]
6. Simplify the right side of the equation:
[tex]\[ a_1 = 28 \][/tex]
Therefore, the first term of the arithmetic progression is [tex]\(28\)[/tex].