Answer :
We are given that the circumference of a circle is
[tex]$$C = 157 \text{ ft}.$$[/tex]
The formula for the circumference of a circle is
[tex]$$C = 2\pi r,$$[/tex]
where [tex]$r$[/tex] is the radius.
To solve for [tex]$r$[/tex], we rearrange the formula:
[tex]$$r = \frac{C}{2\pi}.$$[/tex]
Substitute the given circumference into the equation:
[tex]$$r = \frac{157}{2\pi}.$$[/tex]
We know that
[tex]$$2\pi \approx 6.283185307179586.$$[/tex]
Now, divide to find the radius:
[tex]$$r \approx \frac{157}{6.283185307179586} \approx 24.98732606542757.$$[/tex]
Thus, the radius of the circle is approximately
[tex]$$24.98732606542757 \text{ ft}.$$[/tex]
[tex]$$C = 157 \text{ ft}.$$[/tex]
The formula for the circumference of a circle is
[tex]$$C = 2\pi r,$$[/tex]
where [tex]$r$[/tex] is the radius.
To solve for [tex]$r$[/tex], we rearrange the formula:
[tex]$$r = \frac{C}{2\pi}.$$[/tex]
Substitute the given circumference into the equation:
[tex]$$r = \frac{157}{2\pi}.$$[/tex]
We know that
[tex]$$2\pi \approx 6.283185307179586.$$[/tex]
Now, divide to find the radius:
[tex]$$r \approx \frac{157}{6.283185307179586} \approx 24.98732606542757.$$[/tex]
Thus, the radius of the circle is approximately
[tex]$$24.98732606542757 \text{ ft}.$$[/tex]