Answer :
Given that the mass of a grain of sand is
[tex]$$7 \times 10^{-8} \text{ kg},$$[/tex]
we can convert this value to grams using the conversion factor
[tex]$$1 \text{ kg} = 1000 \text{ g}.$$[/tex]
Step 1: Multiply the mass in kilograms by 1000 to convert to grams.
[tex]$$
7 \times 10^{-8} \text{ kg} \times 1000 \text{ g/kg} = 7 \times 10^{-8} \times 10^{3} \text{ g}.
$$[/tex]
Step 2: Combine the powers of 10.
[tex]$$
7 \times 10^{-8} \times 10^{3} = 7 \times 10^{-8+3} = 7 \times 10^{-5} \text{ g}.
$$[/tex]
Thus, the average mass of a grain of sand is
[tex]$$7 \times 10^{-5} \text{ grams}.$$[/tex]
This is the final answer in standard form.
[tex]$$7 \times 10^{-8} \text{ kg},$$[/tex]
we can convert this value to grams using the conversion factor
[tex]$$1 \text{ kg} = 1000 \text{ g}.$$[/tex]
Step 1: Multiply the mass in kilograms by 1000 to convert to grams.
[tex]$$
7 \times 10^{-8} \text{ kg} \times 1000 \text{ g/kg} = 7 \times 10^{-8} \times 10^{3} \text{ g}.
$$[/tex]
Step 2: Combine the powers of 10.
[tex]$$
7 \times 10^{-8} \times 10^{3} = 7 \times 10^{-8+3} = 7 \times 10^{-5} \text{ g}.
$$[/tex]
Thus, the average mass of a grain of sand is
[tex]$$7 \times 10^{-5} \text{ grams}.$$[/tex]
This is the final answer in standard form.