High School

Select the correct answer.

What is the domain of the function [tex]h[/tex]?

[tex]h(x) = \sqrt{x-7} + 5[/tex]

A. [tex]x \geq 5[/tex]
B. [tex]x \leq 5[/tex]
C. [tex]x \leq -7[/tex]
D. [tex]x \geq 7[/tex]

Answer :

To determine the domain of the function [tex]\( h(x) = \sqrt{x - 7} + 5 \)[/tex], we need to consider when the expression under the square root is non-negative. This is because the square root of a negative number is not defined in the set of real numbers.

1. Start by identifying the expression inside the square root: [tex]\( x - 7 \)[/tex].

2. Set up the inequality for when this expression is non-negative:
[tex]\[
x - 7 \geq 0
\][/tex]

3. Solve the inequality:
[tex]\[
x \geq 7
\][/tex]

This tells us that the function [tex]\( h(x) = \sqrt{x - 7} + 5 \)[/tex] is defined for all values of [tex]\( x \)[/tex] that are greater than or equal to 7.

Therefore, the domain of the function is [tex]\( x \geq 7 \)[/tex].

By looking at the given options:
- A. [tex]\( x \geq 5 \)[/tex]
- B. [tex]\( x \leq 5 \)[/tex]
- C. [tex]\( x \leq -7 \)[/tex]
- D. [tex]\( x \geq 7 \)[/tex]

The correct answer is:
- D. [tex]\( x \geq 7 \)[/tex]