Answer :
We start by writing [tex]$42\%$[/tex] as a fraction over 100:
[tex]$$
42\% = \frac{42}{100}.
$$[/tex]
Next, we simplify the fraction by finding the greatest common divisor (GCD) of [tex]$42$[/tex] and [tex]$100$[/tex]. The GCD of [tex]$42$[/tex] and [tex]$100$[/tex] is [tex]$2$[/tex]. Now, divide both the numerator and the denominator by [tex]$2$[/tex]:
[tex]$$
\frac{42 \div 2}{100 \div 2} = \frac{21}{50}.
$$[/tex]
Thus, [tex]$42\%$[/tex] is equivalent to the simplified fraction
[tex]$$
\frac{21}{50}.
$$[/tex]
The correct answer is option C.
[tex]$$
42\% = \frac{42}{100}.
$$[/tex]
Next, we simplify the fraction by finding the greatest common divisor (GCD) of [tex]$42$[/tex] and [tex]$100$[/tex]. The GCD of [tex]$42$[/tex] and [tex]$100$[/tex] is [tex]$2$[/tex]. Now, divide both the numerator and the denominator by [tex]$2$[/tex]:
[tex]$$
\frac{42 \div 2}{100 \div 2} = \frac{21}{50}.
$$[/tex]
Thus, [tex]$42\%$[/tex] is equivalent to the simplified fraction
[tex]$$
\frac{21}{50}.
$$[/tex]
The correct answer is option C.