High School

[tex]$-2 \frac{2}{3}, -5 \frac{1}{3}, -10 \frac{2}{3}, -21 \frac{1}{3}, -42 \frac{2}{3}, \ldots$[/tex]

Which formula can be used to describe the sequence?

A. [tex]$f(x+1)=-2 f(x)$[/tex]

B. [tex]$f(x+1)=-\frac{1}{2} f(x)$[/tex]

C. [tex]$f(x+1)=\frac{1}{2} f(x)$[/tex]

D. [tex]$f(x+1)=2 f(x)$[/tex]

Answer :

To determine which formula can describe the given sequence:

[tex]$$-2 \frac{2}{3}, -5 \frac{1}{3}, -10 \frac{2}{3}, -21 \frac{1}{3}, -42 \frac{2}{3}, \ldots$$[/tex]

we'll analyze the pattern between the numbers.

1. Convert Mixed Numbers to Improper Fractions

- The sequence is:
[tex]\(-2 \frac{2}{3}, -5 \frac{1}{3}, -10 \frac{2}{3}, -21 \frac{1}{3}, -42 \frac{2}{3}\)[/tex].

- Convert to improper fractions:
- [tex]\(-2 \frac{2}{3} = -\frac{8}{3}\)[/tex]
- [tex]\(-5 \frac{1}{3} = -\frac{16}{3}\)[/tex]
- [tex]\(-10 \frac{2}{3} = -\frac{32}{3}\)[/tex]
- [tex]\(-21 \frac{1}{3} = -\frac{64}{3}\)[/tex]
- [tex]\(-42 \frac{2}{3} = -\frac{128}{3}\)[/tex]

2. Find the Ratio Between Consecutive Terms

- Calculate the ratio between each pair of consecutive terms:
- Ratio from [tex]\(-\frac{8}{3}\)[/tex] to [tex]\(-\frac{16}{3}\)[/tex]:
[tex]\(\frac{-\frac{16}{3}}{-\frac{8}{3}} = 2\)[/tex]
- Ratio from [tex]\(-\frac{16}{3}\)[/tex] to [tex]\(-\frac{32}{3}\)[/tex]:
[tex]\(\frac{-\frac{32}{3}}{-\frac{16}{3}} = 2\)[/tex]
- Ratio from [tex]\(-\frac{32}{3}\)[/tex] to [tex]\(-\frac{64}{3}\)[/tex]:
[tex]\(\frac{-\frac{64}{3}}{-\frac{32}{3}} = 2\)[/tex]
- Ratio from [tex]\(-\frac{64}{3}\)[/tex] to [tex]\(-\frac{128}{3}\)[/tex]:
[tex]\(\frac{-\frac{128}{3}}{-\frac{64}{3}} = 2\)[/tex]

3. Identify the Common Ratio

- All the ratios between consecutive terms are the same: [tex]\(2\)[/tex].

4. Determine the Formula

- Since the ratio is consistent and equal to 2, we use this ratio to determine the formula for [tex]\(f(x+1)\)[/tex].

- The formula for the sequence is:
[tex]\(f(x+1) = 2f(x)\)[/tex].

Therefore, the correct formula that describes the sequence is [tex]\(f(x+1) = 2f(x)\)[/tex].