Answer :
Let's solve each subtraction step-by-step.
[tex]$$\textbf{a. } 15 - (-14)$$[/tex]
When subtracting a negative number, it is equivalent to adding its absolute value:
[tex]\[
15 - (-14) = 15 + 14 = 29.
\][/tex]
---
[tex]$$\textbf{b. } -47 - (-20)$$[/tex]
Similarly, subtracting a negative number becomes addition:
[tex]\[
-47 - (-20) = -47 + 20 = -27.
\][/tex]
---
[tex]$$\textbf{c. } 28 - 32$$[/tex]
Here, we subtract a larger number from a smaller one:
[tex]\[
28 - 32 = -4.
\][/tex]
---
[tex]$$\textbf{d. } -38 - 14$$[/tex]
Subtracting a positive number from a negative number:
[tex]\[
-38 - 14 = -52.
\][/tex]
---
[tex]$$\textbf{e. } 42 - (-14)$$[/tex]
Again, subtracting a negative is equivalent to adding:
[tex]\[
42 - (-14) = 42 + 14 = 56.
\][/tex]
---
[tex]$$\textbf{f. } -18 - (-44)$$[/tex]
Subtract the negative by converting it to addition:
[tex]\[
-18 - (-44) = -18 + 44 = 26.
\][/tex]
---
Thus, the final results are:
[tex]\[
\begin{array}{ll}
\textbf{a.} & 29 \\
\textbf{b.} & -27 \\
\textbf{c.} & -4 \\
\textbf{d.} & -52 \\
\textbf{e.} & 56 \\
\textbf{f.} & 26 \\
\end{array}
\][/tex]
[tex]$$\textbf{a. } 15 - (-14)$$[/tex]
When subtracting a negative number, it is equivalent to adding its absolute value:
[tex]\[
15 - (-14) = 15 + 14 = 29.
\][/tex]
---
[tex]$$\textbf{b. } -47 - (-20)$$[/tex]
Similarly, subtracting a negative number becomes addition:
[tex]\[
-47 - (-20) = -47 + 20 = -27.
\][/tex]
---
[tex]$$\textbf{c. } 28 - 32$$[/tex]
Here, we subtract a larger number from a smaller one:
[tex]\[
28 - 32 = -4.
\][/tex]
---
[tex]$$\textbf{d. } -38 - 14$$[/tex]
Subtracting a positive number from a negative number:
[tex]\[
-38 - 14 = -52.
\][/tex]
---
[tex]$$\textbf{e. } 42 - (-14)$$[/tex]
Again, subtracting a negative is equivalent to adding:
[tex]\[
42 - (-14) = 42 + 14 = 56.
\][/tex]
---
[tex]$$\textbf{f. } -18 - (-44)$$[/tex]
Subtract the negative by converting it to addition:
[tex]\[
-18 - (-44) = -18 + 44 = 26.
\][/tex]
---
Thus, the final results are:
[tex]\[
\begin{array}{ll}
\textbf{a.} & 29 \\
\textbf{b.} & -27 \\
\textbf{c.} & -4 \\
\textbf{d.} & -52 \\
\textbf{e.} & 56 \\
\textbf{f.} & 26 \\
\end{array}
\][/tex]