High School

Subtract the following:

a. [tex]15 - (-14)[/tex]

b. [tex]-47 - (-20)[/tex]

c. [tex]28 - 32[/tex]

d. [tex]-38 - 14[/tex]

e. [tex]42 - (-14)[/tex]

f. [tex]-18 - (-44)[/tex]

Answer :

Let's solve each subtraction step-by-step.

[tex]$$\textbf{a. } 15 - (-14)$$[/tex]

When subtracting a negative number, it is equivalent to adding its absolute value:
[tex]\[
15 - (-14) = 15 + 14 = 29.
\][/tex]

---

[tex]$$\textbf{b. } -47 - (-20)$$[/tex]

Similarly, subtracting a negative number becomes addition:
[tex]\[
-47 - (-20) = -47 + 20 = -27.
\][/tex]

---

[tex]$$\textbf{c. } 28 - 32$$[/tex]

Here, we subtract a larger number from a smaller one:
[tex]\[
28 - 32 = -4.
\][/tex]

---

[tex]$$\textbf{d. } -38 - 14$$[/tex]

Subtracting a positive number from a negative number:
[tex]\[
-38 - 14 = -52.
\][/tex]

---

[tex]$$\textbf{e. } 42 - (-14)$$[/tex]

Again, subtracting a negative is equivalent to adding:
[tex]\[
42 - (-14) = 42 + 14 = 56.
\][/tex]

---

[tex]$$\textbf{f. } -18 - (-44)$$[/tex]

Subtract the negative by converting it to addition:
[tex]\[
-18 - (-44) = -18 + 44 = 26.
\][/tex]

---

Thus, the final results are:
[tex]\[
\begin{array}{ll}
\textbf{a.} & 29 \\
\textbf{b.} & -27 \\
\textbf{c.} & -4 \\
\textbf{d.} & -52 \\
\textbf{e.} & 56 \\
\textbf{f.} & 26 \\
\end{array}
\][/tex]