College

Subtract [tex]$5x^4 + 4x^3 - 3x^2 + 2x$[/tex] from [tex]$-x^5 + 2x^4 - 3x^3 + 4x^2 + 5x$[/tex] using a vertical format.

A. [tex]$-x^5 - 3x^4 - 7x^3 + 7x^2 + 3x$[/tex]
B. [tex]$x^5 - 3x^4 - 7x^3 + 7x^2 - 3x$[/tex]
C. [tex]$-x^5 - 3x^4 - 7x^3 + 7x^2 - 3x$[/tex]
D. [tex]$x^5 - 3x^4 - 7x^3 + 7x^2 + 3x$[/tex]

Answer :

Sure! Let's solve the problem by subtracting the polynomials using a vertical format, step by step.

We have two polynomials:

1. The polynomial from which we will subtract:
[tex]\(-x^5 + 2x^4 - 3x^3 + 4x^2 + 5x\)[/tex]

2. The polynomial to subtract:
[tex]\(5x^4 + 4x^3 - 3x^2 + 2x\)[/tex]

We will align them vertically based on the degree of each term:

```
-x^5 + 2x^4 - 3x^3 + 4x^2 + 5x
-( 5x^4 + 4x^3 - 3x^2 + 2x)
--------------------------------
```

Now, let's subtract the coefficients for each term:

- Degree 5: [tex]\(-x^5 - 0 \cdot x^5 = -x^5\)[/tex]
- Degree 4: [tex]\(2x^4 - 5x^4 = -3x^4\)[/tex]
- Degree 3: [tex]\(-3x^3 - 4x^3 = -7x^3\)[/tex]
- Degree 2: [tex]\(4x^2 - (-3x^2) = 4x^2 + 3x^2 = 7x^2\)[/tex]
- Degree 1: [tex]\(5x - 2x = 3x\)[/tex]

Putting these results together, the final result of the subtraction is:

[tex]\[
-x^5 - 3x^4 - 7x^3 + 7x^2 + 3x
\][/tex]

Looking at the options, the correct answer is:

(a) [tex]\(-x^5 - 3x^4 - 7x^3 + 7x^2 + 3x\)[/tex]