College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Solve the following equation by using substitution. Identify any extraneous solutions.

[tex]x^4 - 45x^2 + 324 = 0[/tex]

Answer :

To solve the equation [tex]\(x^4 - 45x^2 + 324 = 0\)[/tex] using the substitution method, follow these steps:

1. Substitution: Let [tex]\( y = x^2 \)[/tex]. This transforms the equation into a quadratic equation: [tex]\( y^2 - 45y + 324 = 0 \)[/tex].

2. Solve the Quadratic Equation: We need to find the values of [tex]\( y \)[/tex] that satisfy [tex]\( y^2 - 45y + 324 = 0 \)[/tex]. This can be done using the quadratic formula:
[tex]\[
y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\][/tex]
where [tex]\( a = 1 \)[/tex], [tex]\( b = -45 \)[/tex], and [tex]\( c = 324 \)[/tex].

3. Discriminant: Calculate the discriminant [tex]\(\Delta\)[/tex]:
[tex]\[
\Delta = b^2 - 4ac = (-45)^2 - 4 \times 1 \times 324 = 2025 - 1296 = 729
\][/tex]
Since the discriminant is positive, there are two real solutions for [tex]\( y \)[/tex].

4. Find [tex]\( y \)[/tex] Values:
- The first solution for [tex]\( y \)[/tex] is:
[tex]\[
y_1 = \frac{-(-45) + \sqrt{729}}{2 \times 1} = \frac{45 + 27}{2} = \frac{72}{2} = 36
\][/tex]

- The second solution for [tex]\( y \)[/tex] is:
[tex]\[
y_2 = \frac{-(-45) - \sqrt{729}}{2 \times 1} = \frac{45 - 27}{2} = \frac{18}{2} = 9
\][/tex]

5. Back Substitute to Find [tex]\( x \)[/tex]:
- For [tex]\( y = 36 \)[/tex]: since [tex]\( y = x^2 \)[/tex], [tex]\( x^2 = 36 \)[/tex]. So, [tex]\( x = \sqrt{36} = 6 \)[/tex] or [tex]\( x = -\sqrt{36} = -6 \)[/tex].

- For [tex]\( y = 9 \)[/tex]: since [tex]\( y = x^2 \)[/tex], [tex]\( x^2 = 9 \)[/tex]. So, [tex]\( x = \sqrt{9} = 3 \)[/tex] or [tex]\( x = -\sqrt{9} = -3 \)[/tex].

6. Check for Extraneous Solutions: All the roots [tex]\( x = 6, -6, 3, -3 \)[/tex] need to be checked against the original equation [tex]\( x^4 - 45x^2 + 324 = 0 \)[/tex]. Each of these values satisfies the equation.

Thus, the solutions to the equation [tex]\(x^4 - 45x^2 + 324 = 0\)[/tex] are [tex]\( x = 6, -6, 3, -3 \)[/tex], and there are no extraneous solutions.