College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Solve the equation using the quadratic formula:

[tex]15x^2 + 13x = 0[/tex]

A. [tex]x = -\frac{13}{15}, 0[/tex]
B. [tex]x = 0[/tex]
C. [tex]x = \frac{13}{15}, 0[/tex]
D. [tex]x = \pm \frac{13}{15}[/tex]

Answer :

To solve the equation [tex]\(15x^2 + 13x = 0\)[/tex] using the quadratic formula, let's follow these steps:

### Step 1: Identify the coefficients
The given quadratic equation is in the form [tex]\(ax^2 + bx + c = 0\)[/tex]. From the equation [tex]\(15x^2 + 13x = 0\)[/tex]:

- [tex]\(a = 15\)[/tex]
- [tex]\(b = 13\)[/tex]
- [tex]\(c = 0\)[/tex]

### Step 2: Apply the quadratic formula
The quadratic formula is:
[tex]\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\][/tex]

### Step 3: Calculate the discriminant
The discriminant [tex]\(\Delta\)[/tex] is calculated as:
[tex]\[
\Delta = b^2 - 4ac
\][/tex]
Substitute the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[
\Delta = 13^2 - 4 \cdot 15 \cdot 0 = 169
\][/tex]
Since the discriminant is positive, there are two real solutions.

### Step 4: Solve for [tex]\(x\)[/tex]
Now, substitute the values into the quadratic formula:

1. First solution ([tex]\(x_1\)[/tex]):
[tex]\[
x_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-13 + \sqrt{169}}{2 \cdot 15} = \frac{-13 + 13}{30} = \frac{0}{30} = 0
\][/tex]

2. Second solution ([tex]\(x_2\)[/tex]):
[tex]\[
x_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-13 - \sqrt{169}}{2 \cdot 15} = \frac{-13 - 13}{30} = \frac{-26}{30} = -\frac{13}{15}
\][/tex]

### Conclusion:
The solutions to the equation [tex]\(15x^2 + 13x = 0\)[/tex] are [tex]\(x = 0\)[/tex] and [tex]\(x = -\frac{13}{15}\)[/tex].

Thus, the correct option is:

a. [tex]\(x = -\frac{13}{15}, 0\)[/tex]