Solve the equation using the quadratic formula:

[tex]\[ 15x^2 + 13x = 0 \][/tex]

a. [tex]\[ x = -\frac{13}{15}, 0 \][/tex]
b. [tex]\[ x = 0 \][/tex]
c. [tex]\[ x = \frac{13}{15}, 0 \][/tex]
d. [tex]\[ x = \pm \frac{13}{15} \][/tex]

Please select the best answer from the choices provided.

Answer :

To solve the equation [tex]\(15x^2 + 13x = 0\)[/tex] using the quadratic formula, let's first identify the coefficients: [tex]\(a = 15\)[/tex], [tex]\(b = 13\)[/tex], and [tex]\(c = 0\)[/tex].

The quadratic formula is:

[tex]\[
x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a}
\][/tex]

Let's go through the steps:

1. Calculate the Discriminant:

[tex]\[
b^2 - 4ac = 13^2 - 4 \cdot 15 \cdot 0 = 169
\][/tex]

2. Apply the Quadratic Formula:

Since the discriminant is 169, which is non-negative, we have real solutions:

[tex]\[
x_1 = \frac{{-13 + \sqrt{169}}}{30} = \frac{{-13 + 13}}{30} = \frac{0}{30} = 0
\][/tex]

[tex]\[
x_2 = \frac{{-13 - \sqrt{169}}}{30} = \frac{{-13 - 13}}{30} = \frac{-26}{30} = -\frac{13}{15}
\][/tex]

Thus, the solutions to the equation [tex]\(15x^2 + 13x = 0\)[/tex] are [tex]\(x = 0\)[/tex] and [tex]\(x = -\frac{13}{15}\)[/tex].

The correct choice from the given options is:

a. [tex]\(x = -\frac{13}{15}, 0\)[/tex]