College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Solve the equation using the quadratic formula.

[tex]15x^2 + 13x = 0[/tex]

A. [tex]x = -\frac{13}{15}, 0[/tex]
B. [tex]x = 0[/tex]
C. [tex]x = -\frac{13}{15}, 0[/tex]
D. [tex]x = \pm \frac{13}{15}[/tex]

Answer :

To solve the equation [tex]\(15x^2 + 13x = 0\)[/tex] using the quadratic formula, we follow these steps:

1. Identify the coefficients: The standard form of a quadratic equation is [tex]\(ax^2 + bx + c = 0\)[/tex]. Here, [tex]\(a = 15\)[/tex], [tex]\(b = 13\)[/tex], and [tex]\(c = 0\)[/tex].

2. Quadratic Formula: The quadratic formula is given by:
[tex]\[
x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a}
\][/tex]

3. Calculate the discriminant: The discriminant [tex]\(\Delta\)[/tex] is calculated as [tex]\(b^2 - 4ac\)[/tex].
[tex]\[
\Delta = 13^2 - 4 \cdot 15 \cdot 0 = 169
\][/tex]

4. Plug values into the quadratic formula:
[tex]\[
x_1 = \frac{{-13 + \sqrt{169}}}{30}
\][/tex]
[tex]\[
x_2 = \frac{{-13 - \sqrt{169}}}{30}
\][/tex]

5. Simplify:
- For [tex]\(x_1\)[/tex]:
[tex]\[
x_1 = \frac{{-13 + 13}}{30} = \frac{0}{30} = 0
\][/tex]

- For [tex]\(x_2\)[/tex]:
[tex]\[
x_2 = \frac{{-13 - 13}}{30} = \frac{-26}{30} = -\frac{13}{15}
\][/tex]

Thus, the solutions to the equation are [tex]\(x = 0\)[/tex] and [tex]\(x = -\frac{13}{15}\)[/tex].

The correct set of answers corresponding to the given options is:
- b. [tex]\(x=0\)[/tex]
- The other root calculated here matches none of the provided options directly; however, the important solutions are [tex]\(x = 0\)[/tex] and [tex]\(x = -\frac{13}{15}\)[/tex].