College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Solve the equation using the quadratic formula:

[tex]15x^2 + 13x = 0[/tex]

Choose the best answer from the options provided:

A. [tex]x = -\frac{13}{15}, 0[/tex]
B. [tex]x = 0[/tex]
C. [tex]x = \frac{13}{15}, 0[/tex]
D. [tex]x = \pm \frac{13}{15}[/tex]

Answer :

To solve the equation [tex]\(15x^2 + 13x = 0\)[/tex] using the quadratic formula, let's first write the equation in the standard form [tex]\(ax^2 + bx + c = 0\)[/tex]. For this equation:

- [tex]\(a = 15\)[/tex]
- [tex]\(b = 13\)[/tex]
- [tex]\(c = 0\)[/tex]

The quadratic formula is:

[tex]\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\][/tex]

1. Calculate the Discriminant:
The discriminant is given by [tex]\(b^2 - 4ac\)[/tex].
[tex]\[
b^2 = 13^2 = 169
\][/tex]
[tex]\[
4ac = 4 \times 15 \times 0 = 0
\][/tex]
[tex]\[
\text{Discriminant} = 169 - 0 = 169
\][/tex]

2. Calculate the Roots:
Since the discriminant is non-negative, we can proceed with finding the roots.

- Root 1:
[tex]\[
x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} = \frac{-13 + \sqrt{169}}{30} = \frac{-13 + 13}{30} = \frac{0}{30} = 0
\][/tex]

- Root 2:
[tex]\[
x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a} = \frac{-13 - \sqrt{169}}{30} = \frac{-13 - 13}{30} = \frac{-26}{30} = -\frac{13}{15}
\][/tex]

Therefore, the solutions to the equation are [tex]\(x = 0\)[/tex] and [tex]\(x = -\frac{13}{15}\)[/tex].

The best answer from the choices provided is:
A. [tex]\(x = -\frac{13}{15}, 0\)[/tex]