Answer :
The correct answer is: [tex]x = -13/15, x = 0.[/tex]
To solve the quadratic equation [tex]15x^2 + 13x = 0[/tex]
Using the quadratic formula x = (-b ± [tex]\sqrt{ (b^2 - 4ac}[/tex])) / [tex]2a[/tex], we first identify the values of a, b, and c. In this equation, a = 15, b = 13, and c = 0.
Substituting these values into the quadratic formula, we get:
x = ([tex]-13[/tex] ± [tex]\sqrt{(13^2 - 4(15)(0)))} / 2(15)[/tex]
x = ([tex]-13[/tex] ± [tex]\sqrt{(169)) / 30}[/tex]
x = [tex](-13[/tex] ± [tex]13) / 30[/tex]
Simplifying this expression, we find that there are two possible solutions for x:
[tex]x = -13/15[/tex] or [tex]x = 0[/tex]
Therefore, the correct answer is:
x = -13/15, x = 0.