High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Simplify each problem and match them to the correct answer.

a. [tex]x^0[/tex]
b. [tex](12x^3)^2[/tex]
c. [tex]2x^{-2}[/tex]
d. [tex]12x^2 \cdot (-5x^3)[/tex]
e. [tex]\frac{8x^{10}}{2x^2}[/tex]

1. [tex]4x^8[/tex]
2. [tex]\frac{2}{x^2}[/tex]
3. 1
4. [tex]-60x^5[/tex]
5. [tex]144x^6[/tex]

Answer :

Sure! Let's simplify each expression step by step and match them to the correct answers:

a. [tex]\(x^0\)[/tex]

- According to the rule of exponents, any non-zero number raised to the power of zero is 1.
- Therefore, [tex]\(x^0 = 1\)[/tex].
- Match: 3

b. [tex]\((12x^3)^2\)[/tex]

- To simplify, apply the power of a product rule: [tex]\((ab)^n = a^n \cdot b^n\)[/tex].
- So, [tex]\((12x^3)^2 = 12^2 \cdot (x^3)^2\)[/tex].
- Calculating further: [tex]\(12^2 = 144\)[/tex] and [tex]\((x^3)^2 = x^{3 \cdot 2} = x^6\)[/tex].
- The expression simplifies to [tex]\(144x^6\)[/tex].
- Match: 5

c. [tex]\(2x^{-2}\)[/tex]

- A negative exponent means taking the reciprocal, so [tex]\(x^{-n} = \frac{1}{x^n}\)[/tex].
- Therefore, [tex]\(2x^{-2} = 2 \cdot \frac{1}{x^2} = \frac{2}{x^2}\)[/tex].
- Match: 2

d. [tex]\(12x^2 \cdot (-5x^3)\)[/tex]

- First, multiply the coefficients: [tex]\(12 \times -5 = -60\)[/tex].
- Then, for the exponents, use the product of powers rule: [tex]\(x^a \cdot x^b = x^{a+b}\)[/tex].
- Here, [tex]\(x^2 \cdot x^3 = x^{2+3} = x^5\)[/tex].
- So, the expression simplifies to [tex]\(-60x^5\)[/tex].
- Match: 4

e. [tex]\(\frac{8x^{10}}{2x^2}\)[/tex]

- Simplify the fraction by dividing the coefficients: [tex]\(\frac{8}{2} = 4\)[/tex].
- For the variables, use the quotient of powers rule: [tex]\(\frac{x^a}{x^b} = x^{a-b}\)[/tex].
- Thus, [tex]\(\frac{x^{10}}{x^2} = x^{10-2} = x^8\)[/tex].
- The expression simplifies to [tex]\(4x^8\)[/tex].
- Match: 1

So, the correct matching would be:

- a. [tex]\(x^0 = 1\)[/tex] matches with 3
- b. [tex]\((12x^3)^2 = 144x^6\)[/tex] matches with 5
- c. [tex]\(2x^{-2} = \frac{2}{x^2}\)[/tex] matches with 2
- d. [tex]\(12x^2 \cdot (-5x^3) = -60x^5\)[/tex] matches with 4
- e. [tex]\(\frac{8x^{10}}{2x^2} = 4x^8\)[/tex] matches with 1