Answer :
Sure, let's solve the equation step-by-step:
We start with the equation:
[tex]\[ 5(4m + 1) - 2m = -13 \][/tex]
1. Distribute the 5:
Multiply 5 by both terms inside the parentheses:
[tex]\[ 5 \times 4m + 5 \times 1 = 20m + 5 \][/tex]
So, the equation becomes:
[tex]\[ 20m + 5 - 2m = -13 \][/tex]
2. Combine like terms:
Combine the [tex]\(20m\)[/tex] and [tex]\(-2m\)[/tex]:
[tex]\[ 20m - 2m = 18m \][/tex]
So now we have:
[tex]\[ 18m + 5 = -13 \][/tex]
3. Isolate the variable term:
Subtract 5 from both sides to move the constant away from [tex]\(18m\)[/tex]:
[tex]\[ 18m + 5 - 5 = -13 - 5 \][/tex]
[tex]\[ 18m = -18 \][/tex]
4. Solve for [tex]\(m\)[/tex]:
Divide both sides by 18 to solve for [tex]\(m\)[/tex]:
[tex]\[ m = \frac{-18}{18} \][/tex]
[tex]\[ m = -1 \][/tex]
So, the solution to the equation is [tex]\(m = -1\)[/tex].
We start with the equation:
[tex]\[ 5(4m + 1) - 2m = -13 \][/tex]
1. Distribute the 5:
Multiply 5 by both terms inside the parentheses:
[tex]\[ 5 \times 4m + 5 \times 1 = 20m + 5 \][/tex]
So, the equation becomes:
[tex]\[ 20m + 5 - 2m = -13 \][/tex]
2. Combine like terms:
Combine the [tex]\(20m\)[/tex] and [tex]\(-2m\)[/tex]:
[tex]\[ 20m - 2m = 18m \][/tex]
So now we have:
[tex]\[ 18m + 5 = -13 \][/tex]
3. Isolate the variable term:
Subtract 5 from both sides to move the constant away from [tex]\(18m\)[/tex]:
[tex]\[ 18m + 5 - 5 = -13 - 5 \][/tex]
[tex]\[ 18m = -18 \][/tex]
4. Solve for [tex]\(m\)[/tex]:
Divide both sides by 18 to solve for [tex]\(m\)[/tex]:
[tex]\[ m = \frac{-18}{18} \][/tex]
[tex]\[ m = -1 \][/tex]
So, the solution to the equation is [tex]\(m = -1\)[/tex].