High School

Solve the equation:

\[ 5(4m + 1) - 2m = -13 \]

Choose the correct value for \[ m \]:

A. \[ m = -\frac{14}{18} \]

B. \[ m = -\frac{18}{20} \]

C. \[ m = -1 \]

D. \[ m = -2.25 \]

Answer :

Sure, let's solve the equation step-by-step:

We start with the equation:

[tex]\[ 5(4m + 1) - 2m = -13 \][/tex]

1. Distribute the 5:

Multiply 5 by both terms inside the parentheses:

[tex]\[ 5 \times 4m + 5 \times 1 = 20m + 5 \][/tex]

So, the equation becomes:

[tex]\[ 20m + 5 - 2m = -13 \][/tex]

2. Combine like terms:

Combine the [tex]\(20m\)[/tex] and [tex]\(-2m\)[/tex]:

[tex]\[ 20m - 2m = 18m \][/tex]

So now we have:

[tex]\[ 18m + 5 = -13 \][/tex]

3. Isolate the variable term:

Subtract 5 from both sides to move the constant away from [tex]\(18m\)[/tex]:

[tex]\[ 18m + 5 - 5 = -13 - 5 \][/tex]

[tex]\[ 18m = -18 \][/tex]

4. Solve for [tex]\(m\)[/tex]:

Divide both sides by 18 to solve for [tex]\(m\)[/tex]:

[tex]\[ m = \frac{-18}{18} \][/tex]

[tex]\[ m = -1 \][/tex]

So, the solution to the equation is [tex]\(m = -1\)[/tex].