Answer :
Certainly! Let's walk through the solution step by step.
1. Understand the Problem:
- We have [tex]\( x = 30 \)[/tex].
- The expression we need to evaluate is [tex]\( 9 \times (3x + 7x + 6) \)[/tex].
2. Simplify the Expression Inside the Brackets:
- Substitute [tex]\( x = 30 \)[/tex] into the expression.
- Calculate [tex]\( 3x + 7x + 6 \)[/tex]:
- [tex]\( 3x = 3 \times 30 = 90 \)[/tex]
- [tex]\( 7x = 7 \times 30 = 210 \)[/tex]
- So, [tex]\( 3x + 7x + 6 = 90 + 210 + 6 = 306 \)[/tex]
3. Calculate the Final Result:
- Now, multiply the result from inside the brackets by 9:
- [tex]\( 9 \times 306 = 2754 \)[/tex]
So, the expression [tex]\( 9 \times (3x + 7x + 6) \)[/tex] evaluates to 2754 when [tex]\( x = 30 \)[/tex].
1. Understand the Problem:
- We have [tex]\( x = 30 \)[/tex].
- The expression we need to evaluate is [tex]\( 9 \times (3x + 7x + 6) \)[/tex].
2. Simplify the Expression Inside the Brackets:
- Substitute [tex]\( x = 30 \)[/tex] into the expression.
- Calculate [tex]\( 3x + 7x + 6 \)[/tex]:
- [tex]\( 3x = 3 \times 30 = 90 \)[/tex]
- [tex]\( 7x = 7 \times 30 = 210 \)[/tex]
- So, [tex]\( 3x + 7x + 6 = 90 + 210 + 6 = 306 \)[/tex]
3. Calculate the Final Result:
- Now, multiply the result from inside the brackets by 9:
- [tex]\( 9 \times 306 = 2754 \)[/tex]
So, the expression [tex]\( 9 \times (3x + 7x + 6) \)[/tex] evaluates to 2754 when [tex]\( x = 30 \)[/tex].