Answer :
Sure! Let's solve the equation step-by-step:
Given equation:
[tex]\[ 5(4m + 1) - 2m = -13 \][/tex]
### Step 1: Distribute the 5 inside the parentheses
[tex]\[ 5 \times 4m + 5 \times 1 - 2m = -13 \][/tex]
[tex]\[ 20m + 5 - 2m = -13 \][/tex]
### Step 2: Combine like terms
Combine the [tex]\(20m\)[/tex] and [tex]\(-2m\)[/tex]:
[tex]\[ 20m - 2m + 5 = -13 \][/tex]
[tex]\[ 18m + 5 = -13 \][/tex]
### Step 3: Subtract 5 from both sides to isolate the term with the variable
[tex]\[ 18m + 5 - 5 = -13 - 5 \][/tex]
[tex]\[ 18m = -18 \][/tex]
### Step 4: Divide both sides by 18 to solve for [tex]\(m\)[/tex]
[tex]\[ m = \frac{-18}{18} \][/tex]
[tex]\[ m = -1 \][/tex]
So, the solution to the equation [tex]\( 5(4m + 1) - 2m = -13 \)[/tex] is:
[tex]\[ m = -1 \][/tex]
Therefore, the correct answer is [tex]\( m = -1 \)[/tex].
Given equation:
[tex]\[ 5(4m + 1) - 2m = -13 \][/tex]
### Step 1: Distribute the 5 inside the parentheses
[tex]\[ 5 \times 4m + 5 \times 1 - 2m = -13 \][/tex]
[tex]\[ 20m + 5 - 2m = -13 \][/tex]
### Step 2: Combine like terms
Combine the [tex]\(20m\)[/tex] and [tex]\(-2m\)[/tex]:
[tex]\[ 20m - 2m + 5 = -13 \][/tex]
[tex]\[ 18m + 5 = -13 \][/tex]
### Step 3: Subtract 5 from both sides to isolate the term with the variable
[tex]\[ 18m + 5 - 5 = -13 - 5 \][/tex]
[tex]\[ 18m = -18 \][/tex]
### Step 4: Divide both sides by 18 to solve for [tex]\(m\)[/tex]
[tex]\[ m = \frac{-18}{18} \][/tex]
[tex]\[ m = -1 \][/tex]
So, the solution to the equation [tex]\( 5(4m + 1) - 2m = -13 \)[/tex] is:
[tex]\[ m = -1 \][/tex]
Therefore, the correct answer is [tex]\( m = -1 \)[/tex].