Answer :
To find [tex]\((f \cdot g)(x)\)[/tex], we'll multiply the two given functions, [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex].
1. Functions Overview:
- [tex]\(f(x) = -5x\)[/tex]
- [tex]\(g(x) = 8x^2 - 5x - 9\)[/tex]
2. Multiply [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]:
Multiply [tex]\(f(x) = -5x\)[/tex] by each term in [tex]\(g(x) = 8x^2 - 5x - 9\)[/tex]:
- [tex]\(-5x \cdot 8x^2 = -40x^3\)[/tex]
- [tex]\(-5x \cdot (-5x) = 25x^2\)[/tex]
- [tex]\(-5x \cdot (-9) = 45x\)[/tex]
3. Combine the results:
Combine all the terms from the multiplication step:
[tex]\[
(f \cdot g)(x) = -40x^3 + 25x^2 + 45x
\][/tex]
So, the result of [tex]\( (f \cdot g)(x) \)[/tex] is [tex]\(-40x^3 + 25x^2 + 45x\)[/tex].
1. Functions Overview:
- [tex]\(f(x) = -5x\)[/tex]
- [tex]\(g(x) = 8x^2 - 5x - 9\)[/tex]
2. Multiply [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]:
Multiply [tex]\(f(x) = -5x\)[/tex] by each term in [tex]\(g(x) = 8x^2 - 5x - 9\)[/tex]:
- [tex]\(-5x \cdot 8x^2 = -40x^3\)[/tex]
- [tex]\(-5x \cdot (-5x) = 25x^2\)[/tex]
- [tex]\(-5x \cdot (-9) = 45x\)[/tex]
3. Combine the results:
Combine all the terms from the multiplication step:
[tex]\[
(f \cdot g)(x) = -40x^3 + 25x^2 + 45x
\][/tex]
So, the result of [tex]\( (f \cdot g)(x) \)[/tex] is [tex]\(-40x^3 + 25x^2 + 45x\)[/tex].